ray/rllib/models/tf/recurrent_net.py

405 lines
16 KiB
Python

import numpy as np
import gym
from gym.spaces import Box, Discrete, MultiDiscrete
import logging
from typing import Dict, List, Optional, Type
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.policy.rnn_sequencing import add_time_dimension
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.utils.annotations import override, DeveloperAPI
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.tf_utils import one_hot
from ray.rllib.utils.typing import ModelConfigDict, TensorType
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
@DeveloperAPI
class RecurrentNetwork(TFModelV2):
"""Helper class to simplify implementing RNN models with TFModelV2.
Instead of implementing forward(), you can implement forward_rnn() which
takes batches with the time dimension added already.
Here is an example implementation for a subclass
``MyRNNClass(RecurrentNetwork)``::
def __init__(self, *args, **kwargs):
super(MyModelClass, self).__init__(*args, **kwargs)
cell_size = 256
# Define input layers
input_layer = tf.keras.layers.Input(
shape=(None, obs_space.shape[0]))
state_in_h = tf.keras.layers.Input(shape=(256, ))
state_in_c = tf.keras.layers.Input(shape=(256, ))
seq_in = tf.keras.layers.Input(shape=(), dtype=tf.int32)
# Send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
cell_size, return_sequences=True, return_state=True,
name="lstm")(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
output_layer = tf.keras.layers.Dense(...)(lstm_out)
# Create the RNN model
self.rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[output_layer, state_h, state_c])
self.rnn_model.summary()
"""
@override(ModelV2)
def forward(self, input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType) -> (TensorType, List[TensorType]):
"""Adds time dimension to batch before sending inputs to forward_rnn().
You should implement forward_rnn() in your subclass."""
assert seq_lens is not None
padded_inputs = input_dict["obs_flat"]
max_seq_len = tf.shape(padded_inputs)[0] // tf.shape(seq_lens)[0]
output, new_state = self.forward_rnn(
add_time_dimension(
padded_inputs, max_seq_len=max_seq_len, framework="tf"), state,
seq_lens)
return tf.reshape(output, [-1, self.num_outputs]), new_state
def forward_rnn(self, inputs: TensorType, state: List[TensorType],
seq_lens: TensorType) -> (TensorType, List[TensorType]):
"""Call the model with the given input tensors and state.
Args:
inputs (dict): observation tensor with shape [B, T, obs_size].
state (list): list of state tensors, each with shape [B, T, size].
seq_lens (Tensor): 1d tensor holding input sequence lengths.
Returns:
(outputs, new_state): The model output tensor of shape
[B, T, num_outputs] and the list of new state tensors each with
shape [B, size].
Sample implementation for the ``MyRNNClass`` example::
def forward_rnn(self, inputs, state, seq_lens):
model_out, h, c = self.rnn_model([inputs, seq_lens] + state)
return model_out, [h, c]
"""
raise NotImplementedError("You must implement this for a RNN model")
def get_initial_state(self) -> List[TensorType]:
"""Get the initial recurrent state values for the model.
Returns:
list of np.array objects, if any
Sample implementation for the ``MyRNNClass`` example::
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
"""
raise NotImplementedError("You must implement this for a RNN model")
class LSTMWrapper(RecurrentNetwork):
"""An LSTM wrapper serving as an interface for ModelV2s that set use_lstm.
"""
def __init__(self, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space, num_outputs: int,
model_config: ModelConfigDict, name: str):
super(LSTMWrapper, self).__init__(obs_space, action_space, None,
model_config, name)
# At this point, self.num_outputs is the number of nodes coming
# from the wrapped (underlying) model. In other words, self.num_outputs
# is the input size for the LSTM layer.
# If None, set it to the observation space.
if self.num_outputs is None:
self.num_outputs = int(np.product(self.obs_space.shape))
self.cell_size = model_config["lstm_cell_size"]
self.use_prev_action = model_config["lstm_use_prev_action"]
self.use_prev_reward = model_config["lstm_use_prev_reward"]
if isinstance(action_space, Discrete):
self.action_dim = action_space.n
elif isinstance(action_space, MultiDiscrete):
self.action_dim = np.sum(action_space.nvec)
elif action_space.shape is not None:
self.action_dim = int(np.product(action_space.shape))
else:
self.action_dim = int(len(action_space))
# Add prev-action/reward nodes to input to LSTM.
if self.use_prev_action:
self.num_outputs += self.action_dim
if self.use_prev_reward:
self.num_outputs += 1
# Define input layers.
input_layer = tf.keras.layers.Input(
shape=(None, self.num_outputs), name="inputs")
# Set self.num_outputs to the number of output nodes desired by the
# caller of this constructor.
self.num_outputs = num_outputs
state_in_h = tf.keras.layers.Input(shape=(self.cell_size, ), name="h")
state_in_c = tf.keras.layers.Input(shape=(self.cell_size, ), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
# Preprocess observation with a hidden layer and send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
self.cell_size,
return_sequences=True,
return_state=True,
name="lstm")(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
# Postprocess LSTM output with another hidden layer and compute values
logits = tf.keras.layers.Dense(
self.num_outputs,
activation=tf.keras.activations.linear,
name="logits")(lstm_out)
values = tf.keras.layers.Dense(
1, activation=None, name="values")(lstm_out)
# Create the RNN model
self._rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c])
# Print out model summary in INFO logging mode.
if logger.isEnabledFor(logging.INFO):
self._rnn_model.summary()
# Add prev-a/r to this model's view, if required.
if model_config["lstm_use_prev_action"]:
self.view_requirements[SampleBatch.PREV_ACTIONS] = \
ViewRequirement(SampleBatch.ACTIONS, space=self.action_space,
shift=-1)
if model_config["lstm_use_prev_reward"]:
self.view_requirements[SampleBatch.PREV_REWARDS] = \
ViewRequirement(SampleBatch.REWARDS, shift=-1)
@override(RecurrentNetwork)
def forward(self, input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType) -> (TensorType, List[TensorType]):
assert seq_lens is not None
# Push obs through "unwrapped" net's `forward()` first.
wrapped_out, _ = self._wrapped_forward(input_dict, [], None)
# Concat. prev-action/reward if required.
prev_a_r = []
if self.model_config["lstm_use_prev_action"]:
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
prev_a = one_hot(prev_a, self.action_space)
prev_a_r.append(
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim]))
if self.model_config["lstm_use_prev_reward"]:
prev_a_r.append(
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32),
[-1, 1]))
if prev_a_r:
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
# Then through our LSTM.
input_dict["obs_flat"] = wrapped_out
return super().forward(input_dict, state, seq_lens)
@override(RecurrentNetwork)
def forward_rnn(self, inputs: TensorType, state: List[TensorType],
seq_lens: TensorType) -> (TensorType, List[TensorType]):
model_out, self._value_out, h, c = self._rnn_model([inputs, seq_lens] +
state)
return model_out, [h, c]
@override(ModelV2)
def get_initial_state(self) -> List[np.ndarray]:
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
@override(ModelV2)
def value_function(self) -> TensorType:
return tf.reshape(self._value_out, [-1])
class Keras_LSTMWrapper(tf.keras.Model if tf else object):
"""A tf keras auto-LSTM wrapper used when `use_lstm`=True."""
def __init__(
self,
input_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: Optional[int] = None,
*,
name: str,
wrapped_cls: Type["tf.keras.Model"],
max_seq_len: int = 20,
lstm_cell_size: int = 256,
lstm_use_prev_action: bool = False,
lstm_use_prev_reward: bool = False,
**kwargs,
):
super().__init__(name=name)
self.wrapped_keras_model = wrapped_cls(
input_space, action_space, None, name="wrapped_" + name, **kwargs)
self.action_space = action_space
self.max_seq_len = max_seq_len
# Guess the number of outputs for the wrapped model by looking
# at its first output's shape.
# This will be the input size for the LSTM layer (plus
# maybe prev-actions/rewards).
# If no layers in the wrapped model, set it to the
# observation space.
if self.wrapped_keras_model.layers:
assert self.wrapped_keras_model.layers[-1].outputs
assert len(
self.wrapped_keras_model.layers[-1].outputs[0].shape) == 2
wrapped_num_outputs = int(
self.wrapped_keras_model.layers[-1].outputs[0].shape[1])
else:
wrapped_num_outputs = int(np.product(self.obs_space.shape))
self.lstm_cell_size = lstm_cell_size
self.lstm_use_prev_action = lstm_use_prev_action
self.lstm_use_prev_reward = lstm_use_prev_reward
if isinstance(self.action_space, Discrete):
self.action_dim = self.action_space.n
elif isinstance(self.action_space, MultiDiscrete):
self.action_dim = np.sum(self.action_space.nvec)
elif self.action_space.shape is not None:
self.action_dim = int(np.product(self.action_space.shape))
else:
self.action_dim = int(len(self.action_space))
# Add prev-action/reward nodes to input to LSTM.
if self.lstm_use_prev_action:
wrapped_num_outputs += self.action_dim
if self.lstm_use_prev_reward:
wrapped_num_outputs += 1
# Define input layers.
input_layer = tf.keras.layers.Input(
shape=(None, wrapped_num_outputs), name="inputs")
state_in_h = tf.keras.layers.Input(
shape=(self.lstm_cell_size, ), name="h")
state_in_c = tf.keras.layers.Input(
shape=(self.lstm_cell_size, ), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
# Preprocess observation with a hidden layer and send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
self.lstm_cell_size,
return_sequences=True,
return_state=True,
name="lstm")(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
# Postprocess LSTM output with another hidden layer
# if num_outputs not None.
if num_outputs:
logits = tf.keras.layers.Dense(
num_outputs,
activation=tf.keras.activations.linear,
name="logits")(lstm_out)
else:
logits = lstm_out
# Compute values.
values = tf.keras.layers.Dense(
1, activation=None, name="values")(lstm_out)
# Create the RNN model
self._rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c])
# Use view-requirements of wrapped model and add own
# requirements.
self.view_requirements = \
getattr(self.wrapped_keras_model, "view_requirements", {
SampleBatch.OBS: ViewRequirement(space=input_space)
})
# Add prev-a/r to this model's view, if required.
if self.lstm_use_prev_action:
self.view_requirements[SampleBatch.PREV_ACTIONS] = \
ViewRequirement(SampleBatch.ACTIONS, space=self.action_space,
shift=-1)
if self.lstm_use_prev_reward:
self.view_requirements[SampleBatch.PREV_REWARDS] = \
ViewRequirement(SampleBatch.REWARDS, shift=-1)
# Internal states view requirements.
for i in range(2):
space = Box(-1.0, 1.0, shape=(self.lstm_cell_size, ))
self.view_requirements["state_in_{}".format(i)] = \
ViewRequirement(
"state_out_{}".format(i),
shift=-1,
used_for_compute_actions=True,
batch_repeat_value=max_seq_len,
space=space)
self.view_requirements["state_out_{}".format(i)] = \
ViewRequirement(space=space, used_for_training=True)
def call(self, input_dict: SampleBatch) -> \
(TensorType, List[TensorType], Dict[str, TensorType]):
assert input_dict.get(SampleBatch.SEQ_LENS) is not None
# Push obs through underlying (wrapped) model first.
wrapped_out, _, _ = self.wrapped_keras_model(input_dict)
# Concat. prev-action/reward if required.
prev_a_r = []
if self.lstm_use_prev_action:
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
prev_a = one_hot(prev_a, self.action_space)
prev_a_r.append(
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim]))
if self.lstm_use_prev_reward:
prev_a_r.append(
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32),
[-1, 1]))
if prev_a_r:
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
max_seq_len = tf.shape(wrapped_out)[0] // tf.shape(
input_dict[SampleBatch.SEQ_LENS])[0]
wrapped_out_plus_time_dim = add_time_dimension(
wrapped_out, max_seq_len=max_seq_len, framework="tf")
model_out, value_out, h, c = self._rnn_model([
wrapped_out_plus_time_dim, input_dict[SampleBatch.SEQ_LENS],
input_dict["state_in_0"], input_dict["state_in_1"]
])
model_out_no_time_dim = tf.reshape(
model_out, tf.concat([[-1], tf.shape(model_out)[2:]], axis=0))
return model_out_no_time_dim, [h, c], {
SampleBatch.VF_PREDS: tf.reshape(value_out, [-1])
}