ray/python/ray/state.py
Stephanie Wang a4d7792c0e
[core] Fix bugs in admission control again (#14222)
* Track which pull bundle requests are ready to run

* Regression test

* Reset retry timer on pull activation, don't count created objects towards memory usage, abort objects on pull deactivation

* Revert "Track which pull bundle requests are ready to run"

This reverts commit b5d0714783fa2fc842bdd4e2d2802228e25f03c2.

* Check object active before receiving chunk

* lint

* debug, unit test, fix race condition

* lint

* update

* lint

* fix

* fix build

* fix test

* remove print

* Fix bug in bytes accounting

* Split
2021-02-19 18:07:57 -08:00

1010 lines
38 KiB
Python

from collections import defaultdict
import json
import logging
import sys
import time
import ray
from ray import gcs_utils
from google.protobuf.json_format import MessageToDict
from ray._private import services
from ray._private.client_mode_hook import client_mode_hook
from ray.utils import (decode, binary_to_hex, hex_to_binary)
from ray._raylet import GlobalStateAccessor
logger = logging.getLogger(__name__)
class GlobalState:
"""A class used to interface with the Ray control state.
# TODO(zongheng): In the future move this to use Ray's redis module in the
# backend to cut down on # of request RPCs.
Attributes:
redis_client: The Redis client used to query the primary redis server.
redis_clients: Redis clients for each of the Redis shards.
global_state_accessor: The client used to query gcs table from gcs
server.
"""
def __init__(self):
"""Create a GlobalState object."""
# Args used for lazy init of this object.
self.redis_address = None
self.redis_password = None
# The redis server storing metadata, such as function table, client
# table, log files, event logs, workers/actions info.
self.redis_client = None
# Clients for the redis shards, storing the object table & task table.
self.redis_clients = None
self.global_state_accessor = None
def _check_connected(self):
"""Ensure that the object has been initialized before it is used.
This lazily initializes clients needed for state accessors.
Raises:
RuntimeError: An exception is raised if ray.init() has not been
called yet.
"""
if self.redis_client is None and self.redis_address is not None:
self._really_init_global_state()
if (self.redis_client is None or self.redis_clients is None
or self.global_state_accessor is None):
raise ray.exceptions.RaySystemError(
"Ray has not been started yet. You can start Ray with "
"'ray.init()'.")
def disconnect(self):
"""Disconnect global state from GCS."""
self.redis_client = None
self.redis_clients = None
self.redis_address = None
self.redis_password = None
if self.global_state_accessor is not None:
self.global_state_accessor.disconnect()
self.global_state_accessor = None
def _initialize_global_state(self, redis_address, redis_password=None):
"""Set args for lazily initialization of the GlobalState object.
It's possible that certain keys in Redis may not have been fully
populated yet. In this case, we will retry this method until they have
been populated or we exceed a timeout.
Args:
redis_address: The Redis address to connect.
redis_password: The password of the redis server.
"""
# Save args for lazy init of global state. This avoids opening extra
# redis connections from each worker until needed.
self.redis_address = redis_address
self.redis_password = redis_password
def _really_init_global_state(self, timeout=20):
self.redis_client = services.create_redis_client(
self.redis_address, self.redis_password)
self.global_state_accessor = GlobalStateAccessor(
self.redis_address, self.redis_password, False)
self.global_state_accessor.connect()
start_time = time.time()
num_redis_shards = None
redis_shard_addresses = []
while time.time() - start_time < timeout:
# Attempt to get the number of Redis shards.
num_redis_shards = self.redis_client.get("NumRedisShards")
if num_redis_shards is None:
print("Waiting longer for NumRedisShards to be populated.")
time.sleep(1)
continue
num_redis_shards = int(num_redis_shards)
assert num_redis_shards >= 1, (
f"Expected at least one Redis shard, found {num_redis_shards}."
)
# Attempt to get all of the Redis shards.
redis_shard_addresses = self.redis_client.lrange(
"RedisShards", start=0, end=-1)
if len(redis_shard_addresses) != num_redis_shards:
print("Waiting longer for RedisShards to be populated.")
time.sleep(1)
continue
# If we got here then we successfully got all of the information.
break
# Check to see if we timed out.
if time.time() - start_time >= timeout:
raise TimeoutError("Timed out while attempting to initialize the "
"global state. "
f"num_redis_shards = {num_redis_shards}, "
"redis_shard_addresses = "
f"{redis_shard_addresses}")
# Get the rest of the information.
self.redis_clients = []
for shard_address in redis_shard_addresses:
self.redis_clients.append(
services.create_redis_client(shard_address.decode(),
self.redis_password))
def _execute_command(self, key, *args):
"""Execute a Redis command on the appropriate Redis shard based on key.
Args:
key: The object ref or the task ID that the query is about.
args: The command to run.
Returns:
The value returned by the Redis command.
"""
client = self.redis_clients[key.redis_shard_hash() % len(
self.redis_clients)]
return client.execute_command(*args)
def _keys(self, pattern):
"""Execute the KEYS command on all Redis shards.
Args:
pattern: The KEYS pattern to query.
Returns:
The concatenated list of results from all shards.
"""
result = []
for client in self.redis_clients:
result.extend(list(client.scan_iter(match=pattern)))
return result
def object_table(self, object_ref=None):
"""Fetch and parse the object table info for one or more object refs.
Args:
object_ref: An object ref to fetch information about. If this is
None, then the entire object table is fetched.
Returns:
Information from the object table.
"""
self._check_connected()
if object_ref is not None:
object_ref = ray.ObjectRef(hex_to_binary(object_ref))
object_info = self.global_state_accessor.get_object_info(
object_ref)
if object_info is None:
return {}
else:
object_location_info = gcs_utils.ObjectLocationInfo.FromString(
object_info)
return self._gen_object_info(object_location_info)
else:
object_table = self.global_state_accessor.get_object_table()
results = {}
for i in range(len(object_table)):
object_location_info = gcs_utils.ObjectLocationInfo.FromString(
object_table[i])
results[binary_to_hex(object_location_info.object_id)] = \
self._gen_object_info(object_location_info)
return results
def _gen_object_info(self, object_location_info):
"""Parse object location info.
Returns:
Information from object.
"""
locations = []
for location in object_location_info.locations:
locations.append(ray.utils.binary_to_hex(location.manager))
object_info = {
"ObjectRef": ray.utils.binary_to_hex(
object_location_info.object_id),
"Locations": locations,
}
return object_info
def actor_table(self, actor_id):
"""Fetch and parse the actor table information for a single actor ID.
Args:
actor_id: A hex string of the actor ID to fetch information about.
If this is None, then the actor table is fetched.
Returns:
Information from the actor table.
"""
self._check_connected()
if actor_id is not None:
actor_id = ray.ActorID(hex_to_binary(actor_id))
actor_info = self.global_state_accessor.get_actor_info(actor_id)
if actor_info is None:
return {}
else:
actor_table_data = gcs_utils.ActorTableData.FromString(
actor_info)
return self._gen_actor_info(actor_table_data)
else:
actor_table = self.global_state_accessor.get_actor_table()
results = {}
for i in range(len(actor_table)):
actor_table_data = gcs_utils.ActorTableData.FromString(
actor_table[i])
results[binary_to_hex(actor_table_data.actor_id)] = \
self._gen_actor_info(actor_table_data)
return results
def _gen_actor_info(self, actor_table_data):
"""Parse actor table data.
Returns:
Information from actor table.
"""
actor_info = {
"ActorID": binary_to_hex(actor_table_data.actor_id),
"Name": actor_table_data.name,
"JobID": binary_to_hex(actor_table_data.job_id),
"Address": {
"IPAddress": actor_table_data.address.ip_address,
"Port": actor_table_data.address.port,
"NodeID": binary_to_hex(actor_table_data.address.raylet_id),
},
"OwnerAddress": {
"IPAddress": actor_table_data.owner_address.ip_address,
"Port": actor_table_data.owner_address.port,
"NodeID": binary_to_hex(
actor_table_data.owner_address.raylet_id),
},
"State": actor_table_data.state,
"NumRestarts": actor_table_data.num_restarts,
"Timestamp": actor_table_data.timestamp,
}
return actor_info
def node_resource_table(self, node_id=None):
"""Fetch and parse the node resource table info for one.
Args:
node_id: An node ID to fetch information about.
Returns:
Information from the node resource table.
"""
self._check_connected()
node_id = ray.NodeID(hex_to_binary(node_id))
node_resource_bytes = \
self.global_state_accessor.get_node_resource_info(node_id)
if node_resource_bytes is None:
return {}
else:
node_resource_info = gcs_utils.ResourceMap.FromString(
node_resource_bytes)
return {
key: value.resource_capacity
for key, value in node_resource_info.items.items()
}
def node_table(self):
"""Fetch and parse the Gcs node info table.
Returns:
Information about the node in the cluster.
"""
self._check_connected()
node_table = self.global_state_accessor.get_node_table()
results = []
for node_info_item in node_table:
item = gcs_utils.GcsNodeInfo.FromString(node_info_item)
node_info = {
"NodeID": ray.utils.binary_to_hex(item.node_id),
"Alive": item.state ==
gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"),
"NodeManagerAddress": item.node_manager_address,
"NodeManagerHostname": item.node_manager_hostname,
"NodeManagerPort": item.node_manager_port,
"ObjectManagerPort": item.object_manager_port,
"ObjectStoreSocketName": item.object_store_socket_name,
"RayletSocketName": item.raylet_socket_name,
"MetricsExportPort": item.metrics_export_port,
}
node_info["alive"] = node_info["Alive"]
node_info["Resources"] = self.node_resource_table(
node_info["NodeID"]) if node_info["Alive"] else {}
results.append(node_info)
return results
def job_table(self):
"""Fetch and parse the Redis job table.
Returns:
Information about the Ray jobs in the cluster,
namely a list of dicts with keys:
- "JobID" (identifier for the job),
- "DriverIPAddress" (IP address of the driver for this job),
- "DriverPid" (process ID of the driver for this job),
- "StartTime" (UNIX timestamp of the start time of this job),
- "StopTime" (UNIX timestamp of the stop time of this job, if any)
"""
self._check_connected()
job_table = self.global_state_accessor.get_job_table()
results = []
for i in range(len(job_table)):
entry = gcs_utils.JobTableData.FromString(job_table[i])
job_info = {}
job_info["JobID"] = entry.job_id.hex()
job_info["DriverIPAddress"] = entry.driver_ip_address
job_info["DriverPid"] = entry.driver_pid
if entry.is_dead:
job_info["StopTime"] = entry.timestamp
else:
job_info["StartTime"] = entry.timestamp
results.append(job_info)
return results
def profile_table(self):
self._check_connected()
result = defaultdict(list)
profile_table = self.global_state_accessor.get_profile_table()
for i in range(len(profile_table)):
profile = gcs_utils.ProfileTableData.FromString(profile_table[i])
component_type = profile.component_type
component_id = binary_to_hex(profile.component_id)
node_ip_address = profile.node_ip_address
for event in profile.profile_events:
try:
extra_data = json.loads(event.extra_data)
except ValueError:
extra_data = {}
profile_event = {
"event_type": event.event_type,
"component_id": component_id,
"node_ip_address": node_ip_address,
"component_type": component_type,
"start_time": event.start_time,
"end_time": event.end_time,
"extra_data": extra_data
}
result[component_id].append(profile_event)
return dict(result)
def get_placement_group_by_name(self, placement_group_name):
self._check_connected()
placement_group_info = (
self.global_state_accessor.get_placement_group_by_name(
placement_group_name))
if placement_group_info is None:
return None
else:
placement_group_table_data = \
gcs_utils.PlacementGroupTableData.FromString(
placement_group_info)
return self._gen_placement_group_info(placement_group_table_data)
def placement_group_table(self, placement_group_id=None):
self._check_connected()
if placement_group_id is not None:
placement_group_id = ray.PlacementGroupID(
hex_to_binary(placement_group_id.hex()))
placement_group_info = (
self.global_state_accessor.get_placement_group_info(
placement_group_id))
if placement_group_info is None:
return {}
else:
placement_group_info = (gcs_utils.PlacementGroupTableData.
FromString(placement_group_info))
return self._gen_placement_group_info(placement_group_info)
else:
placement_group_table = self.global_state_accessor.\
get_placement_group_table()
results = {}
for placement_group_info in placement_group_table:
placement_group_table_data = gcs_utils.\
PlacementGroupTableData.FromString(placement_group_info)
placement_group_id = binary_to_hex(
placement_group_table_data.placement_group_id)
results[placement_group_id] = \
self._gen_placement_group_info(placement_group_table_data)
return results
def _gen_placement_group_info(self, placement_group_info):
# This should be imported here, otherwise, it will error doc build.
from ray.core.generated.common_pb2 import PlacementStrategy
def get_state(state):
if state == ray.gcs_utils.PlacementGroupTableData.PENDING:
return "PENDING"
elif state == ray.gcs_utils.PlacementGroupTableData.CREATED:
return "CREATED"
else:
return "REMOVED"
def get_strategy(strategy):
if strategy == PlacementStrategy.PACK:
return "PACK"
elif strategy == PlacementStrategy.STRICT_PACK:
return "STRICT_PACK"
elif strategy == PlacementStrategy.STRICT_SPREAD:
return "STRICT_SPREAD"
elif strategy == PlacementStrategy.SPREAD:
return "SPREAD"
else:
raise ValueError(
f"Invalid strategy returned: {PlacementStrategy}")
assert placement_group_info is not None
return {
"placement_group_id": binary_to_hex(
placement_group_info.placement_group_id),
"name": placement_group_info.name,
"bundles": {
# The value here is needs to be dictionarified
# otherwise, the payload becomes unserializable.
bundle.bundle_id.bundle_index:
MessageToDict(bundle)["unitResources"]
for bundle in placement_group_info.bundles
},
"strategy": get_strategy(placement_group_info.strategy),
"state": get_state(placement_group_info.state),
}
def _seconds_to_microseconds(self, time_in_seconds):
"""A helper function for converting seconds to microseconds."""
time_in_microseconds = 10**6 * time_in_seconds
return time_in_microseconds
# Colors are specified at
# https://github.com/catapult-project/catapult/blob/master/tracing/tracing/base/color_scheme.html. # noqa: E501
_default_color_mapping = defaultdict(
lambda: "generic_work", {
"worker_idle": "cq_build_abandoned",
"task": "rail_response",
"task:deserialize_arguments": "rail_load",
"task:execute": "rail_animation",
"task:store_outputs": "rail_idle",
"wait_for_function": "detailed_memory_dump",
"ray.get": "good",
"ray.put": "terrible",
"ray.wait": "vsync_highlight_color",
"submit_task": "background_memory_dump",
"fetch_and_run_function": "detailed_memory_dump",
"register_remote_function": "detailed_memory_dump",
})
# These colors are for use in Chrome tracing.
_chrome_tracing_colors = [
"thread_state_uninterruptible",
"thread_state_iowait",
"thread_state_running",
"thread_state_runnable",
"thread_state_sleeping",
"thread_state_unknown",
"background_memory_dump",
"light_memory_dump",
"detailed_memory_dump",
"vsync_highlight_color",
"generic_work",
"good",
"bad",
"terrible",
# "black",
# "grey",
# "white",
"yellow",
"olive",
"rail_response",
"rail_animation",
"rail_idle",
"rail_load",
"startup",
"heap_dump_stack_frame",
"heap_dump_object_type",
"heap_dump_child_node_arrow",
"cq_build_running",
"cq_build_passed",
"cq_build_failed",
"cq_build_abandoned",
"cq_build_attempt_runnig",
"cq_build_attempt_passed",
"cq_build_attempt_failed",
]
def chrome_tracing_dump(self, filename=None):
"""Return a list of profiling events that can viewed as a timeline.
To view this information as a timeline, simply dump it as a json file
by passing in "filename" or using using json.dump, and then load go to
chrome://tracing in the Chrome web browser and load the dumped file.
Make sure to enable "Flow events" in the "View Options" menu.
Args:
filename: If a filename is provided, the timeline is dumped to that
file.
Returns:
If filename is not provided, this returns a list of profiling
events. Each profile event is a dictionary.
"""
# TODO(rkn): Support including the task specification data in the
# timeline.
# TODO(rkn): This should support viewing just a window of time or a
# limited number of events.
self._check_connected()
profile_table = self.profile_table()
all_events = []
for component_id_hex, component_events in profile_table.items():
# Only consider workers and drivers.
component_type = component_events[0]["component_type"]
if component_type not in ["worker", "driver"]:
continue
for event in component_events:
new_event = {
# The category of the event.
"cat": event["event_type"],
# The string displayed on the event.
"name": event["event_type"],
# The identifier for the group of rows that the event
# appears in.
"pid": event["node_ip_address"],
# The identifier for the row that the event appears in.
"tid": event["component_type"] + ":" +
event["component_id"],
# The start time in microseconds.
"ts": self._seconds_to_microseconds(event["start_time"]),
# The duration in microseconds.
"dur": self._seconds_to_microseconds(event["end_time"] -
event["start_time"]),
# What is this?
"ph": "X",
# This is the name of the color to display the box in.
"cname": self._default_color_mapping[event["event_type"]],
# The extra user-defined data.
"args": event["extra_data"],
}
# Modify the json with the additional user-defined extra data.
# This can be used to add fields or override existing fields.
if "cname" in event["extra_data"]:
new_event["cname"] = event["extra_data"]["cname"]
if "name" in event["extra_data"]:
new_event["name"] = event["extra_data"]["name"]
all_events.append(new_event)
if filename is not None:
with open(filename, "w") as outfile:
json.dump(all_events, outfile)
else:
return all_events
def chrome_tracing_object_transfer_dump(self, filename=None):
"""Return a list of transfer events that can viewed as a timeline.
To view this information as a timeline, simply dump it as a json file
by passing in "filename" or using using json.dump, and then load go to
chrome://tracing in the Chrome web browser and load the dumped file.
Make sure to enable "Flow events" in the "View Options" menu.
Args:
filename: If a filename is provided, the timeline is dumped to that
file.
Returns:
If filename is not provided, this returns a list of profiling
events. Each profile event is a dictionary.
"""
self._check_connected()
node_id_to_address = {}
for node_info in self.node_table():
node_id_to_address[node_info["NodeID"]] = "{}:{}".format(
node_info["NodeManagerAddress"],
node_info["ObjectManagerPort"])
all_events = []
for key, items in self.profile_table().items():
# Only consider object manager events.
if items[0]["component_type"] != "object_manager":
continue
for event in items:
if event["event_type"] == "transfer_send":
object_ref, remote_node_id, _, _ = event["extra_data"]
elif event["event_type"] == "transfer_receive":
object_ref, remote_node_id, _ = event["extra_data"]
elif event["event_type"] == "receive_pull_request":
object_ref, remote_node_id = event["extra_data"]
else:
assert False, "This should be unreachable."
# Choose a color by reading the first couple of hex digits of
# the object ref as an integer and turning that into a color.
object_ref_int = int(object_ref[:2], 16)
color = self._chrome_tracing_colors[object_ref_int % len(
self._chrome_tracing_colors)]
new_event = {
# The category of the event.
"cat": event["event_type"],
# The string displayed on the event.
"name": event["event_type"],
# The identifier for the group of rows that the event
# appears in.
"pid": node_id_to_address[key],
# The identifier for the row that the event appears in.
"tid": node_id_to_address[remote_node_id],
# The start time in microseconds.
"ts": self._seconds_to_microseconds(event["start_time"]),
# The duration in microseconds.
"dur": self._seconds_to_microseconds(event["end_time"] -
event["start_time"]),
# What is this?
"ph": "X",
# This is the name of the color to display the box in.
"cname": color,
# The extra user-defined data.
"args": event["extra_data"],
}
all_events.append(new_event)
# Add another box with a color indicating whether it was a send
# or a receive event.
if event["event_type"] == "transfer_send":
additional_event = new_event.copy()
additional_event["cname"] = "black"
all_events.append(additional_event)
elif event["event_type"] == "transfer_receive":
additional_event = new_event.copy()
additional_event["cname"] = "grey"
all_events.append(additional_event)
else:
pass
if filename is not None:
with open(filename, "w") as outfile:
json.dump(all_events, outfile)
else:
return all_events
def workers(self):
"""Get a dictionary mapping worker ID to worker information."""
self._check_connected()
# Get all data in worker table
worker_table = self.global_state_accessor.get_worker_table()
workers_data = {}
for i in range(len(worker_table)):
worker_table_data = gcs_utils.WorkerTableData.FromString(
worker_table[i])
if worker_table_data.is_alive and \
worker_table_data.worker_type == gcs_utils.WORKER:
worker_id = binary_to_hex(
worker_table_data.worker_address.worker_id)
worker_info = worker_table_data.worker_info
workers_data[worker_id] = {
"node_ip_address": decode(worker_info[b"node_ip_address"]),
"plasma_store_socket": decode(
worker_info[b"plasma_store_socket"])
}
if b"stderr_file" in worker_info:
workers_data[worker_id]["stderr_file"] = decode(
worker_info[b"stderr_file"])
if b"stdout_file" in worker_info:
workers_data[worker_id]["stdout_file"] = decode(
worker_info[b"stdout_file"])
return workers_data
def add_worker(self, worker_id, worker_type, worker_info):
""" Add a worker to the cluster.
Args:
worker_id: ID of this worker. Type is bytes.
worker_type: Type of this worker. Value is ray.gcs_utils.DRIVER or
ray.gcs_utils.WORKER.
worker_info: Info of this worker. Type is dict{str: str}.
Returns:
Is operation success
"""
worker_data = ray.gcs_utils.WorkerTableData()
worker_data.is_alive = True
worker_data.worker_address.worker_id = worker_id
worker_data.worker_type = worker_type
for k, v in worker_info.items():
worker_data.worker_info[k] = bytes(v, encoding="utf-8")
return self.global_state_accessor.add_worker_info(
worker_data.SerializeToString())
def _job_length(self):
event_log_sets = self.redis_client.keys("event_log*")
overall_smallest = sys.maxsize
overall_largest = 0
num_tasks = 0
for event_log_set in event_log_sets:
fwd_range = self.redis_client.zrange(
event_log_set, start=0, end=0, withscores=True)
overall_smallest = min(overall_smallest, fwd_range[0][1])
rev_range = self.redis_client.zrevrange(
event_log_set, start=0, end=0, withscores=True)
overall_largest = max(overall_largest, rev_range[0][1])
num_tasks += self.redis_client.zcount(
event_log_set, min=0, max=time.time())
if num_tasks == 0:
return 0, 0, 0
return overall_smallest, overall_largest, num_tasks
def cluster_resources(self):
"""Get the current total cluster resources.
Note that this information can grow stale as nodes are added to or
removed from the cluster.
Returns:
A dictionary mapping resource name to the total quantity of that
resource in the cluster.
"""
self._check_connected()
resources = defaultdict(int)
nodes = self.node_table()
for node in nodes:
# Only count resources from latest entries of live nodes.
if node["Alive"]:
for key, value in node["Resources"].items():
resources[key] += value
return dict(resources)
def _live_node_ids(self):
"""Returns a set of node IDs corresponding to nodes still alive."""
return {
node["NodeID"]
for node in self.node_table() if (node["Alive"])
}
def _available_resources_per_node(self):
"""Returns a dictionary mapping node id to avaiable resources."""
available_resources_by_id = {}
all_available_resources = \
self.global_state_accessor.get_all_available_resources()
for available_resource in all_available_resources:
message = ray.gcs_utils.AvailableResources.FromString(
available_resource)
# Calculate available resources for this node.
dynamic_resources = {}
for resource_id, capacity in \
message.resources_available.items():
dynamic_resources[resource_id] = capacity
# Update available resources for this node.
node_id = ray.utils.binary_to_hex(message.node_id)
available_resources_by_id[node_id] = dynamic_resources
# Update nodes in cluster.
node_ids = self._live_node_ids()
# Remove disconnected nodes.
for node_id in available_resources_by_id.keys():
if node_id not in node_ids:
del available_resources_by_id[node_id]
return available_resources_by_id
def available_resources(self):
"""Get the current available cluster resources.
This is different from `cluster_resources` in that this will return
idle (available) resources rather than total resources.
Note that this information can grow stale as tasks start and finish.
Returns:
A dictionary mapping resource name to the total quantity of that
resource in the cluster.
"""
self._check_connected()
available_resources_by_id = self._available_resources_per_node()
# Calculate total available resources.
total_available_resources = defaultdict(int)
for available_resources in available_resources_by_id.values():
for resource_id, num_available in available_resources.items():
total_available_resources[resource_id] += num_available
return dict(total_available_resources)
state = GlobalState()
"""A global object used to access the cluster's global state."""
def jobs():
"""Get a list of the jobs in the cluster (for debugging only).
Returns:
Information from the job table, namely a list of dicts with keys:
- "JobID" (identifier for the job),
- "DriverIPAddress" (IP address of the driver for this job),
- "DriverPid" (process ID of the driver for this job),
- "StartTime" (UNIX timestamp of the start time of this job),
- "StopTime" (UNIX timestamp of the stop time of this job, if any)
"""
return state.job_table()
@client_mode_hook
def nodes():
"""Get a list of the nodes in the cluster (for debugging only).
Returns:
Information about the Ray clients in the cluster.
"""
return state.node_table()
def workers():
"""Get a list of the workers in the cluster.
Returns:
Information about the Ray workers in the cluster.
"""
return state.workers()
def current_node_id():
"""Return the node id of the current node.
For example, "node:172.10.5.34". This can be used as a custom resource,
e.g., {node_id: 1} to reserve the whole node, or {node_id: 0.001} to
just force placement on the node.
Returns:
Id of the current node.
"""
return (ray.resource_spec.NODE_ID_PREFIX +
ray._private.services.get_node_ip_address())
def node_ids():
"""Get a list of the node ids in the cluster.
For example, ["node:172.10.5.34", "node:172.42.3.77"]. These can be used
as custom resources, e.g., {node_id: 1} to reserve the whole node, or
{node_id: 0.001} to just force placement on the node.
Returns:
List of the node resource ids.
"""
node_ids = []
for node in nodes():
for k, v in node["Resources"].items():
if k.startswith(ray.resource_spec.NODE_ID_PREFIX):
node_ids.append(k)
return node_ids
def actors(actor_id=None):
"""Fetch actor info for one or more actor IDs (for debugging only).
Args:
actor_id: A hex string of the actor ID to fetch information about. If
this is None, then all actor information is fetched.
Returns:
Information about the actors.
"""
return state.actor_table(actor_id=actor_id)
def objects(object_ref=None):
"""Fetch and parse the object table info for one or more object refs.
Args:
object_ref: An object ref to fetch information about. If this is None,
then the entire object table is fetched.
Returns:
Information from the object table.
"""
return state.object_table(object_ref=object_ref)
def timeline(filename=None):
"""Return a list of profiling events that can viewed as a timeline.
To view this information as a timeline, simply dump it as a json file by
passing in "filename" or using using json.dump, and then load go to
chrome://tracing in the Chrome web browser and load the dumped file.
Args:
filename: If a filename is provided, the timeline is dumped to that
file.
Returns:
If filename is not provided, this returns a list of profiling events.
Each profile event is a dictionary.
"""
return state.chrome_tracing_dump(filename=filename)
def object_transfer_timeline(filename=None):
"""Return a list of transfer events that can viewed as a timeline.
To view this information as a timeline, simply dump it as a json file by
passing in "filename" or using using json.dump, and then load go to
chrome://tracing in the Chrome web browser and load the dumped file. Make
sure to enable "Flow events" in the "View Options" menu.
Args:
filename: If a filename is provided, the timeline is dumped to that
file.
Returns:
If filename is not provided, this returns a list of profiling events.
Each profile event is a dictionary.
"""
return state.chrome_tracing_object_transfer_dump(filename=filename)
@client_mode_hook
def cluster_resources():
"""Get the current total cluster resources.
Note that this information can grow stale as nodes are added to or removed
from the cluster.
Returns:
A dictionary mapping resource name to the total quantity of that
resource in the cluster.
"""
return state.cluster_resources()
@client_mode_hook
def available_resources():
"""Get the current available cluster resources.
This is different from `cluster_resources` in that this will return idle
(available) resources rather than total resources.
Note that this information can grow stale as tasks start and finish.
Returns:
A dictionary mapping resource name to the total quantity of that
resource in the cluster.
"""
return state.available_resources()