ray/doc/source/profiling.rst
Zongheng Yang 782b4aeb0f Document how to profile Ray using pprof. (#1464)
* Document how to profile Ray using pprof.

* Link to profiling.rst via main doc site; fix lint

* Some changes and clarifications.
2018-01-25 21:40:52 -08:00

94 lines
2.9 KiB
ReStructuredText

Profiling Ray
=============
This document details, for Ray developers, how to use ``pprof`` to profile Ray
binaries.
Installation
------------
These instructions are for Ubuntu only. Attempts to get ``pprof`` to correctly
symbolize on Mac OS have failed.
.. code-block:: bash
sudo apt-get install google-perftools libgoogle-perftools-dev
Changes to compilation and linking
----------------------------------
Let's say we want to profile the ``plasma_manager``. Change the link
instruction in ``src/plasma/CMakeLists.txt`` from
.. code-block:: cmake
target_link_libraries(plasma_manager common ${PLASMA_STATIC_LIB} ray_static ${ARROW_STATIC_LIB} -lpthread)
to additionally include ``-lprofiler``:
.. code-block:: cmake
target_link_libraries(plasma_manager common ${PLASMA_STATIC_LIB} ray_static ${ARROW_STATIC_LIB} -lpthread -lprofiler)
Additionally, add ``-g -ggdb`` to ``CMAKE_C_FLAGS`` and ``CMAKE_CXX_FLAGS`` to
enable the debug symbols. (Keeping ``-O3`` seems okay.)
Recompile.
Launching the to-profile binary
-------------------------------
In various places, instead of launching the target binary via
``plasma_manager <args>``, it must be launched with
.. code-block:: bash
LD_PRELOAD=/usr/lib/libprofiler.so CPUPROFILE=/tmp/pprof.out plasma_manager <args>
In practice, this means modifying ``python/ray/plasma/plasma.py`` so that the
manager is launched with a command that passes a ``modified_env`` into
``Popen``.
.. code-block:: python
modified_env = os.environ.copy()
modified_env["LD_PRELOAD"] = "/usr/lib/libprofiler.so"
modified_env["CPUPROFILE"] = "/tmp/pprof.out"
process = subprocess.Popen(command,
stdout=stdout_file,
stderr=stderr_file,
env=modified_env)
The file ``/tmp/pprof.out`` will be empty until you let the binary run the
target workload for a while and then ``kill`` it.
Visualizing the CPU profile
---------------------------
The output of ``pprof`` can be visualized in many ways. Here we output it as a
zoomable ``.svg`` image displaying the call graph annotated with hot paths.
.. code-block:: bash
# Use the appropriate path.
PLASMA_MANAGER=ray/python/ray/core/src/plasma/plasma_manager
google-pprof -svg $PLASMA_MANAGER /tmp/pprof.out > /tmp/pprof.svg
# Then open the .svg file with Chrome.
# If you realize the call graph is too large, use -focus=<some function> to zoom
# into subtrees.
google-pprof -focus=epoll_wait -svg $PLASMA_MANAGER /tmp/pprof.out > /tmp/pprof.svg
Here's a snapshot of an example svg output, taken from the official
documentation:
.. image:: http://goog-perftools.sourceforge.net/doc/pprof-test-big.gif
References
----------
- The `pprof documentation <http://goog-perftools.sourceforge.net/doc/cpu_profiler.html>`_.
- A `Go version of pprof <https://github.com/google/pprof>`_.
- The `gperftools <https://github.com/gperftools/gperftools>`_, including libprofiler, tcmalloc, and other goodies.