ray/doc/source/index.rst

132 lines
3.9 KiB
ReStructuredText

Ray
===
.. raw:: html
<embed>
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
</embed>
*Ray is a flexible, high-performance distributed execution framework.*
Ray is easy to install: ``pip install ray``
Example Use
-----------
+------------------------------------------------+----------------------------------------------------+
| **Basic Python** | **Distributed with Ray** |
+------------------------------------------------+----------------------------------------------------+
|.. code-block:: python |.. code-block:: python |
| | |
| # Execute f serially. | # Execute f in parallel. |
| | |
| | @ray.remote |
| def f(): | def f(): |
| time.sleep(1) | time.sleep(1) |
| return 1 | return 1 |
| | |
| | |
| | ray.init() |
| results = [f() for i in range(4)] | results = ray.get([f.remote() for i in range(4)]) |
+------------------------------------------------+----------------------------------------------------+
View the `codebase on GitHub`_.
.. _`codebase on GitHub`: https://github.com/ray-project/ray
Ray comes with libraries that accelerate deep learning and reinforcement learning development:
- `Ray Tune`_: Hyperparameter Optimization Framework
- `Ray RLlib`_: Scalable Reinforcement Learning
.. _`Ray Tune`: tune.html
.. _`Ray RLlib`: rllib.html
.. toctree::
:maxdepth: 1
:caption: Installation
installation.rst
install-on-docker.rst
installation-troubleshooting.rst
.. toctree::
:maxdepth: 1
:caption: Getting Started
tutorial.rst
api.rst
actors.rst
using-ray-with-gpus.rst
webui.rst
.. toctree::
:maxdepth: 1
:caption: Ray Tune
tune.rst
tune-config.rst
hyperband.rst
pbt.rst
.. toctree::
:maxdepth: 1
:caption: Ray RLlib
rllib.rst
policy-optimizers.rst
rllib-dev.rst
.. toctree::
:maxdepth: 1
:caption: Pandas on Ray
pandas_on_ray.rst
.. toctree::
:maxdepth: 1
:caption: Examples
example-rl-pong.rst
example-policy-gradient.rst
example-parameter-server.rst
example-resnet.rst
example-a3c.rst
example-lbfgs.rst
example-evolution-strategies.rst
example-cython.rst
example-streaming.rst
using-ray-with-tensorflow.rst
.. toctree::
:maxdepth: 1
:caption: Design
internals-overview.rst
serialization.rst
fault-tolerance.rst
plasma-object-store.rst
resources.rst
.. toctree::
:maxdepth: 1
:caption: Cluster Usage
autoscaling.rst
using-ray-on-a-cluster.rst
using-ray-on-a-large-cluster.rst
using-ray-and-docker-on-a-cluster.md
.. toctree::
:maxdepth: 1
:caption: Help
troubleshooting.rst
development.rst
profiling.rst
contact.rst