No description
Find a file
2016-07-10 22:31:12 -07:00
cmake/Modules add FindNumPy.cmake 2016-03-10 14:46:26 -08:00
data load imagenet 2016-06-10 17:25:55 -07:00
doc fixes to documentation (#242) 2016-07-10 15:06:44 -07:00
examples fixes to documentation (#242) 2016-07-10 15:06:44 -07:00
include/ray RAY_BREAK_IF_DEBUGGING (#247) 2016-07-10 13:39:54 -07:00
lib/python adding pylint (#233) 2016-07-08 12:39:11 -07:00
protos int and long should be treated similarly (#220) 2016-07-06 17:31:58 -07:00
scripts remove installation of dependencies from setup script (#239) 2016-07-08 20:03:21 -07:00
src Use Boost IPC (#249) 2016-07-10 15:41:26 -07:00
test clean up imports (#230) 2016-07-08 12:46:47 -07:00
thirdparty Fix GRPC project patch, again (#255) 2016-07-10 22:31:12 -07:00
vsprojects Update Visual Studio projects (#199) 2016-07-02 21:07:12 -07:00
.editorconfig Initial editor config (#175) 2016-06-27 13:10:55 -07:00
.gitignore Ignore protobuf generated files (#200) 2016-07-02 21:07:28 -07:00
.gitmodules integrate numbuf into tree and remove ftruncate to prepare windows port 2016-06-18 12:00:17 -07:00
.travis.yml remove installation of dependencies from setup script (#239) 2016-07-08 20:03:21 -07:00
build.sh Write computation graph to file 2016-06-27 12:20:30 -07:00
CMakeLists.txt reorder includes to fix version conflicts (#250) 2016-07-10 14:50:34 -07:00
install-dependencies.sh fixes to documentation (#242) 2016-07-10 15:06:44 -07:00
LICENSE switching to BSD (#90) 2016-06-06 12:07:36 -07:00
pylintrc adding pylint (#233) 2016-07-08 12:39:11 -07:00
Ray.sln Visual Studio project file changes (#186) 2016-06-29 22:52:53 -07:00
README.md remove installation of dependencies from setup script (#239) 2016-07-08 20:03:21 -07:00
setup-env.sh Split up and polish build scripts 2016-06-22 16:20:56 -07:00
setup.sh remove installation of dependencies from setup script (#239) 2016-07-08 20:03:21 -07:00

Ray

Build Status

Ray is an experimental distributed execution framework with a Python-like programming model. It is under development and not ready for general use.

The goal of Ray is to make it easy to write machine learning applications that run on a cluster while providing the development and debugging experience of working on a single machine.

Before jumping into the details, here's a simple Python example for doing a Monte Carlo estimation of pi (using multiple cores or potentially multiple machines).

import ray
import functions # See definition below

results = []
for _ in range(10):
  results.append(functions.estimate_pi(100))
estimate = np.mean([ray.get(ref) for ref in results])
print "Pi is approximately {}.".format(estimate)

This assumes that we've defined the file functions.py as below.

import ray
import numpy as np

@ray.remote([int], [float])
def estimate_pi(n):
  x = np.random.uniform(size=n)
  y = np.random.uniform(size=n)
  return 4 * np.mean(x ** 2 + y ** 2 < 1)

Within the for loop, each call to functions.estimate_pi(100) sends a message to the scheduler asking it to schedule the task of running functions.estimate_pi with the argument 100. This call returns right away without waiting for the actual estimation of pi to take place. Instead of returning a float, it returns an object reference, which represents the eventual output of the computation.

The call to ray.get(ref) takes an object reference and returns the actual estimate of pi (waiting until the computation has finished if necessary).

Next Steps

Example Applications