ray/release/ml_user_tests/ray-lightning/app_config.yaml
xwjiang2010 40f9561f78
[ml/release] fix ptl ml user test. (#26365)
Between version1 and 2 of [this](https://console.anyscale-staging.com/o/anyscale-internal/configurations/app-config-versions/apt_TsCpJCRjMJDpNFhNgJmyCniS) cluster_env, 1 fails and 2 succeeds.

btw, we really should start to think about a systematic approach towards our python dependency story.
- between client and server
- but more importantly server side, and any conflicts among requirements
- how are pip freeze result evolving over time
2022-07-07 11:45:46 -07:00

20 lines
735 B
YAML

base_image: {{ env["RAY_IMAGE_ML_NIGHTLY_GPU"] | default("anyscale/ray-ml:nightly-py37-gpu") }}
debian_packages:
- curl
python:
pip_packages:
- ray-lightning
- tblib
- torch==1.9.0
conda_packages: []
post_build_cmds:
# Upgrade the Ray Lightning version, otherwise it will be cached in the Anyscale Docker image.
- echo {{ env["TIMESTAMP"] }}
- pip3 install -U --force-reinstall ray-lightning pytorch-lightning lightning-bolts
- pip3 install --force-reinstall torch==1.9.0
- pip3 install --force-reinstall torchvision==0.10.0
- pip uninstall -y ray || true && pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }}
- {{ env["RAY_WHEELS_SANITY_CHECK"] | default("echo No Ray wheels sanity check") }}