ray/doc/source/serve/doc_code/quick_start.py

43 lines
1 KiB
Python

# flake8: noqa
# fmt: off
# __serve_example_begin__
import requests
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from ray import serve
serve.start()
# Train model.
iris_dataset = load_iris()
model = GradientBoostingClassifier()
model.fit(iris_dataset["data"], iris_dataset["target"])
@serve.deployment(route_prefix="/iris")
class BoostingModel:
def __init__(self, model):
self.model = model
self.label_list = iris_dataset["target_names"].tolist()
async def __call__(self, request):
payload = (await request.json())["vector"]
print(f"Received http request with data {payload}")
prediction = self.model.predict([payload])[0]
human_name = self.label_list[prediction]
return {"result": human_name}
# Deploy model.
BoostingModel.deploy(model)
# Query it!
sample_request_input = {"vector": [1.2, 1.0, 1.1, 0.9]}
response = requests.get(
"http://localhost:8000/iris", json=sample_request_input)
print(response.text)
# __serve_example_end__