ray/doc/source/ray-air/doc_code/tf_starter.py
Antoni Baum ea94cda1f3
[AIR] Replace train. with session. (#26303)
This PR replaces legacy API calls to `train.` with AIR `session.` in Train code, examples and docs.

Depends on https://github.com/ray-project/ray/pull/25735
2022-07-07 16:29:04 -07:00

103 lines
2.7 KiB
Python

# flake8: noqa
# isort: skip_file
# __air_tf_preprocess_start__
import ray
a = 5
b = 10
size = 1000
items = [i / size for i in range(size)]
dataset = ray.data.from_items([{"x": x, "y": a * x + b} for x in items])
# __air_tf_preprocess_end__
# __air_tf_train_start__
import tensorflow as tf
from ray.air import session
from ray.air.callbacks.keras import Callback
from ray.train.tensorflow import prepare_dataset_shard
from ray.train.tensorflow import TensorflowTrainer
def build_model() -> tf.keras.Model:
model = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(1,)),
tf.keras.layers.Dense(10),
tf.keras.layers.Dense(1),
]
)
return model
def train_func(config: dict):
batch_size = config.get("batch_size", 64)
epochs = config.get("epochs", 3)
strategy = tf.distribute.MultiWorkerMirroredStrategy()
with strategy.scope():
# Model building/compiling need to be within `strategy.scope()`.
multi_worker_model = build_model()
multi_worker_model.compile(
optimizer=tf.keras.optimizers.SGD(learning_rate=config.get("lr", 1e-3)),
loss=tf.keras.losses.mean_squared_error,
metrics=[tf.keras.metrics.mean_squared_error],
)
dataset = session.get_dataset_shard("train")
results = []
for _ in range(epochs):
tf_dataset = prepare_dataset_shard(
dataset.to_tf(
label_column="y",
output_signature=(
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None), dtype=tf.float32),
),
batch_size=batch_size,
)
)
history = multi_worker_model.fit(tf_dataset, callbacks=[Callback()])
results.append(history.history)
return results
num_workers = 2
use_gpu = False
config = {"lr": 1e-3, "batch_size": 32, "epochs": 4}
trainer = TensorflowTrainer(
train_loop_per_worker=train_func,
train_loop_config=config,
scaling_config=dict(num_workers=num_workers, use_gpu=use_gpu),
datasets={"train": dataset},
)
result = trainer.fit()
print(result.metrics)
# __air_tf_train_end__
# __air_tf_batchpred_start__
import numpy as np
from ray.train.batch_predictor import BatchPredictor
from ray.train.tensorflow import TensorflowPredictor
batch_predictor = BatchPredictor.from_checkpoint(
result.checkpoint, TensorflowPredictor, model_definition=build_model
)
items = [{"x": np.random.uniform(0, 1)} for _ in range(10)]
prediction_dataset = ray.data.from_items(items)
predictions = batch_predictor.predict(prediction_dataset, dtype=tf.float32)
print("PREDICTIONS")
predictions.show()
# __air_tf_batchpred_end__