ray/test/runtest.py
Robert Nishihara 658c14282c Remove legacy Ray code. (#3121)
* Remove legacy Ray code.

* Fix cmake and simplify monitor.

* Fix linting

* Updates

* Fix

* Implement some methods.

* Remove more plasma manager references.

* Fix

* Linting

* Fix

* Fix

* Make sure class IDs are strings.

* Some path fixes

* Fix

* Path fixes and update arrow

* Fixes.

* linting

* Fixes

* Java fixes

* Some java fixes

* TaskLanguage -> Language

* Minor

* Fix python test and remove unused method signature.

* Fix java tests

* Fix jenkins tests

* Remove commented out code.
2018-10-26 13:36:58 -07:00

2380 lines
68 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import string
import sys
import threading
import time
from collections import defaultdict, namedtuple, OrderedDict
import numpy as np
import pytest
import ray
import ray.ray_constants as ray_constants
import ray.test.test_utils
def assert_equal(obj1, obj2):
module_numpy = (type(obj1).__module__ == np.__name__
or type(obj2).__module__ == np.__name__)
if module_numpy:
empty_shape = ((hasattr(obj1, "shape") and obj1.shape == ())
or (hasattr(obj2, "shape") and obj2.shape == ()))
if empty_shape:
# This is a special case because currently np.testing.assert_equal
# fails because we do not properly handle different numerical
# types.
assert obj1 == obj2, ("Objects {} and {} are "
"different.".format(obj1, obj2))
else:
np.testing.assert_equal(obj1, obj2)
elif hasattr(obj1, "__dict__") and hasattr(obj2, "__dict__"):
special_keys = ["_pytype_"]
assert (set(list(obj1.__dict__.keys()) + special_keys) == set(
list(obj2.__dict__.keys()) + special_keys)), ("Objects {} "
"and {} are "
"different.".format(
obj1, obj2))
for key in obj1.__dict__.keys():
if key not in special_keys:
assert_equal(obj1.__dict__[key], obj2.__dict__[key])
elif type(obj1) is dict or type(obj2) is dict:
assert_equal(obj1.keys(), obj2.keys())
for key in obj1.keys():
assert_equal(obj1[key], obj2[key])
elif type(obj1) is list or type(obj2) is list:
assert len(obj1) == len(obj2), ("Objects {} and {} are lists with "
"different lengths.".format(
obj1, obj2))
for i in range(len(obj1)):
assert_equal(obj1[i], obj2[i])
elif type(obj1) is tuple or type(obj2) is tuple:
assert len(obj1) == len(obj2), ("Objects {} and {} are tuples with "
"different lengths.".format(
obj1, obj2))
for i in range(len(obj1)):
assert_equal(obj1[i], obj2[i])
elif (ray.serialization.is_named_tuple(type(obj1))
or ray.serialization.is_named_tuple(type(obj2))):
assert len(obj1) == len(obj2), ("Objects {} and {} are named tuples "
"with different lengths.".format(
obj1, obj2))
for i in range(len(obj1)):
assert_equal(obj1[i], obj2[i])
else:
assert obj1 == obj2, "Objects {} and {} are different.".format(
obj1, obj2)
if sys.version_info >= (3, 0):
long_extras = [0, np.array([["hi", u"hi"], [1.3, 1]])]
else:
long_extras = [
long(0), # noqa: E501,F821
np.array([
["hi", u"hi"],
[1.3, long(1)] # noqa: E501,F821
])
]
PRIMITIVE_OBJECTS = [
0, 0.0, 0.9, 1 << 62, 1 << 100, 1 << 999, [1 << 100, [1 << 100]], "a",
string.printable, "\u262F", u"hello world", u"\xff\xfe\x9c\x001\x000\x00",
None, True, False, [], (), {},
np.int8(3),
np.int32(4),
np.int64(5),
np.uint8(3),
np.uint32(4),
np.uint64(5),
np.float32(1.9),
np.float64(1.9),
np.zeros([100, 100]),
np.random.normal(size=[100, 100]),
np.array(["hi", 3]),
np.array(["hi", 3], dtype=object)
] + long_extras
COMPLEX_OBJECTS = [
[[[[[[[[[[[[]]]]]]]]]]]],
{"obj{}".format(i): np.random.normal(size=[100, 100])
for i in range(10)},
# {(): {(): {(): {(): {(): {(): {(): {(): {(): {(): {
# (): {(): {}}}}}}}}}}}}},
(
(((((((((), ), ), ), ), ), ), ), ), ),
{
"a": {
"b": {
"c": {
"d": {}
}
}
}
}
]
class Foo(object):
def __init__(self, value=0):
self.value = value
def __hash__(self):
return hash(self.value)
def __eq__(self, other):
return other.value == self.value
class Bar(object):
def __init__(self):
for i, val in enumerate(PRIMITIVE_OBJECTS + COMPLEX_OBJECTS):
setattr(self, "field{}".format(i), val)
class Baz(object):
def __init__(self):
self.foo = Foo()
self.bar = Bar()
def method(self, arg):
pass
class Qux(object):
def __init__(self):
self.objs = [Foo(), Bar(), Baz()]
class SubQux(Qux):
def __init__(self):
Qux.__init__(self)
class CustomError(Exception):
pass
Point = namedtuple("Point", ["x", "y"])
NamedTupleExample = namedtuple("Example",
"field1, field2, field3, field4, field5")
CUSTOM_OBJECTS = [
Exception("Test object."),
CustomError(),
Point(11, y=22),
Foo(),
Bar(),
Baz(), # Qux(), SubQux(),
NamedTupleExample(1, 1.0, "hi", np.zeros([3, 5]), [1, 2, 3])
]
BASE_OBJECTS = PRIMITIVE_OBJECTS + COMPLEX_OBJECTS + CUSTOM_OBJECTS
LIST_OBJECTS = [[obj] for obj in BASE_OBJECTS]
TUPLE_OBJECTS = [(obj, ) for obj in BASE_OBJECTS]
# The check that type(obj).__module__ != "numpy" should be unnecessary, but
# otherwise this seems to fail on Mac OS X on Travis.
DICT_OBJECTS = (
[{
obj: obj
} for obj in PRIMITIVE_OBJECTS
if (obj.__hash__ is not None and type(obj).__module__ != "numpy")] + [{
0: obj
} for obj in BASE_OBJECTS] + [{
Foo(123): Foo(456)
}])
RAY_TEST_OBJECTS = BASE_OBJECTS + LIST_OBJECTS + TUPLE_OBJECTS + DICT_OBJECTS
@pytest.fixture
def ray_start():
# Start the Ray processes.
ray.init(num_cpus=1)
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
@pytest.fixture
def shutdown_only():
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
def test_passing_arguments_by_value(ray_start):
@ray.remote
def f(x):
return x
# Check that we can pass arguments by value to remote functions and
# that they are uncorrupted.
for obj in RAY_TEST_OBJECTS:
assert_equal(obj, ray.get(f.remote(obj)))
def test_ray_recursive_objects(ray_start):
class ClassA(object):
pass
# Make a list that contains itself.
lst = []
lst.append(lst)
# Make an object that contains itself as a field.
a1 = ClassA()
a1.field = a1
# Make two objects that contain each other as fields.
a2 = ClassA()
a3 = ClassA()
a2.field = a3
a3.field = a2
# Make a dictionary that contains itself.
d1 = {}
d1["key"] = d1
# Create a list of recursive objects.
recursive_objects = [lst, a1, a2, a3, d1]
# Check that exceptions are thrown when we serialize the recursive
# objects.
for obj in recursive_objects:
with pytest.raises(Exception):
ray.put(obj)
def test_passing_arguments_by_value_out_of_the_box(ray_start):
@ray.remote
def f(x):
return x
# Test passing lambdas.
def temp():
return 1
assert ray.get(f.remote(temp))() == 1
assert ray.get(f.remote(lambda x: x + 1))(3) == 4
# Test sets.
assert ray.get(f.remote(set())) == set()
s = {1, (1, 2, "hi")}
assert ray.get(f.remote(s)) == s
# Test types.
assert ray.get(f.remote(int)) == int
assert ray.get(f.remote(float)) == float
assert ray.get(f.remote(str)) == str
class Foo(object):
def __init__(self):
pass
# Make sure that we can put and get a custom type. Note that the result
# won't be "equal" to Foo.
ray.get(ray.put(Foo))
def test_putting_object_that_closes_over_object_id(ray_start):
# This test is here to prevent a regression of
# https://github.com/ray-project/ray/issues/1317.
class Foo(object):
def __init__(self):
self.val = ray.put(0)
def method(self):
f
f = Foo()
with pytest.raises(ray.raylet.common_error):
ray.put(f)
def test_python_workers(shutdown_only):
# Test the codepath for starting workers from the Python script,
# instead of the local scheduler. This codepath is for debugging
# purposes only.
num_workers = 4
ray.worker._init(
num_workers=num_workers,
start_workers_from_local_scheduler=False,
start_ray_local=True)
@ray.remote
def f(x):
return x
values = ray.get([f.remote(1) for i in range(num_workers * 2)])
assert values == [1] * (num_workers * 2)
def test_put_get(shutdown_only):
ray.init(num_workers=0)
for i in range(100):
value_before = i * 10**6
objectid = ray.put(value_before)
value_after = ray.get(objectid)
assert value_before == value_after
for i in range(100):
value_before = i * 10**6 * 1.0
objectid = ray.put(value_before)
value_after = ray.get(objectid)
assert value_before == value_after
for i in range(100):
value_before = "h" * i
objectid = ray.put(value_before)
value_after = ray.get(objectid)
assert value_before == value_after
for i in range(100):
value_before = [1] * i
objectid = ray.put(value_before)
value_after = ray.get(objectid)
assert value_before == value_after
def test_custom_serializers(shutdown_only):
ray.init(num_cpus=1)
class Foo(object):
def __init__(self):
self.x = 3
def custom_serializer(obj):
return 3, "string1", type(obj).__name__
def custom_deserializer(serialized_obj):
return serialized_obj, "string2"
ray.register_custom_serializer(
Foo, serializer=custom_serializer, deserializer=custom_deserializer)
assert ray.get(ray.put(Foo())) == ((3, "string1", Foo.__name__), "string2")
class Bar(object):
def __init__(self):
self.x = 3
ray.register_custom_serializer(
Bar, serializer=custom_serializer, deserializer=custom_deserializer)
@ray.remote
def f():
return Bar()
assert ray.get(f.remote()) == ((3, "string1", Bar.__name__), "string2")
def test_register_class(shutdown_only):
ray.init(num_cpus=2)
# Check that putting an object of a class that has not been registered
# throws an exception.
class TempClass(object):
pass
ray.get(ray.put(TempClass()))
# Test subtypes of dictionaries.
value_before = OrderedDict([("hello", 1), ("world", 2)])
object_id = ray.put(value_before)
assert value_before == ray.get(object_id)
value_before = defaultdict(lambda: 0, [("hello", 1), ("world", 2)])
object_id = ray.put(value_before)
assert value_before == ray.get(object_id)
value_before = defaultdict(lambda: [], [("hello", 1), ("world", 2)])
object_id = ray.put(value_before)
assert value_before == ray.get(object_id)
# Test passing custom classes into remote functions from the driver.
@ray.remote
def f(x):
return x
foo = ray.get(f.remote(Foo(7)))
assert foo == Foo(7)
regex = re.compile(r"\d+\.\d*")
new_regex = ray.get(f.remote(regex))
# This seems to fail on the system Python 3 that comes with
# Ubuntu, so it is commented out for now:
# assert regex == new_regex
# Instead, we do this:
assert regex.pattern == new_regex.pattern
# Test returning custom classes created on workers.
@ray.remote
def g():
return SubQux(), Qux()
subqux, qux = ray.get(g.remote())
assert subqux.objs[2].foo.value == 0
# Test exporting custom class definitions from one worker to another
# when the worker is blocked in a get.
class NewTempClass(object):
def __init__(self, value):
self.value = value
@ray.remote
def h1(x):
return NewTempClass(x)
@ray.remote
def h2(x):
return ray.get(h1.remote(x))
assert ray.get(h2.remote(10)).value == 10
# Test registering multiple classes with the same name.
@ray.remote(num_return_vals=3)
def j():
class Class0(object):
def method0(self):
pass
c0 = Class0()
class Class0(object):
def method1(self):
pass
c1 = Class0()
class Class0(object):
def method2(self):
pass
c2 = Class0()
return c0, c1, c2
results = []
for _ in range(5):
results += j.remote()
for i in range(len(results) // 3):
c0, c1, c2 = ray.get(results[(3 * i):(3 * (i + 1))])
c0.method0()
c1.method1()
c2.method2()
assert not hasattr(c0, "method1")
assert not hasattr(c0, "method2")
assert not hasattr(c1, "method0")
assert not hasattr(c1, "method2")
assert not hasattr(c2, "method0")
assert not hasattr(c2, "method1")
@ray.remote
def k():
class Class0(object):
def method0(self):
pass
c0 = Class0()
class Class0(object):
def method1(self):
pass
c1 = Class0()
class Class0(object):
def method2(self):
pass
c2 = Class0()
return c0, c1, c2
results = ray.get([k.remote() for _ in range(5)])
for c0, c1, c2 in results:
c0.method0()
c1.method1()
c2.method2()
assert not hasattr(c0, "method1")
assert not hasattr(c0, "method2")
assert not hasattr(c1, "method0")
assert not hasattr(c1, "method2")
assert not hasattr(c2, "method0")
assert not hasattr(c2, "method1")
def test_keyword_args(shutdown_only):
@ray.remote
def keyword_fct1(a, b="hello"):
return "{} {}".format(a, b)
@ray.remote
def keyword_fct2(a="hello", b="world"):
return "{} {}".format(a, b)
@ray.remote
def keyword_fct3(a, b, c="hello", d="world"):
return "{} {} {} {}".format(a, b, c, d)
ray.init(num_cpus=1)
x = keyword_fct1.remote(1)
assert ray.get(x) == "1 hello"
x = keyword_fct1.remote(1, "hi")
assert ray.get(x) == "1 hi"
x = keyword_fct1.remote(1, b="world")
assert ray.get(x) == "1 world"
x = keyword_fct1.remote(a=1, b="world")
assert ray.get(x) == "1 world"
x = keyword_fct2.remote(a="w", b="hi")
assert ray.get(x) == "w hi"
x = keyword_fct2.remote(b="hi", a="w")
assert ray.get(x) == "w hi"
x = keyword_fct2.remote(a="w")
assert ray.get(x) == "w world"
x = keyword_fct2.remote(b="hi")
assert ray.get(x) == "hello hi"
x = keyword_fct2.remote("w")
assert ray.get(x) == "w world"
x = keyword_fct2.remote("w", "hi")
assert ray.get(x) == "w hi"
x = keyword_fct3.remote(0, 1, c="w", d="hi")
assert ray.get(x) == "0 1 w hi"
x = keyword_fct3.remote(0, b=1, c="w", d="hi")
assert ray.get(x) == "0 1 w hi"
x = keyword_fct3.remote(a=0, b=1, c="w", d="hi")
assert ray.get(x) == "0 1 w hi"
x = keyword_fct3.remote(0, 1, d="hi", c="w")
assert ray.get(x) == "0 1 w hi"
x = keyword_fct3.remote(0, 1, c="w")
assert ray.get(x) == "0 1 w world"
x = keyword_fct3.remote(0, 1, d="hi")
assert ray.get(x) == "0 1 hello hi"
x = keyword_fct3.remote(0, 1)
assert ray.get(x) == "0 1 hello world"
x = keyword_fct3.remote(a=0, b=1)
assert ray.get(x) == "0 1 hello world"
# Check that we cannot pass invalid keyword arguments to functions.
@ray.remote
def f1():
return
@ray.remote
def f2(x, y=0, z=0):
return
# Make sure we get an exception if too many arguments are passed in.
with pytest.raises(Exception):
f1.remote(3)
with pytest.raises(Exception):
f1.remote(x=3)
with pytest.raises(Exception):
f2.remote(0, w=0)
with pytest.raises(Exception):
f2.remote(3, x=3)
# Make sure we get an exception if too many arguments are passed in.
with pytest.raises(Exception):
f2.remote(1, 2, 3, 4)
@ray.remote
def f3(x):
return x
assert ray.get(f3.remote(4)) == 4
def test_variable_number_of_args(shutdown_only):
@ray.remote
def varargs_fct1(*a):
return " ".join(map(str, a))
@ray.remote
def varargs_fct2(a, *b):
return " ".join(map(str, b))
try:
@ray.remote
def kwargs_throw_exception(**c):
return ()
kwargs_exception_thrown = False
except Exception:
kwargs_exception_thrown = True
ray.init(num_cpus=1)
x = varargs_fct1.remote(0, 1, 2)
assert ray.get(x) == "0 1 2"
x = varargs_fct2.remote(0, 1, 2)
assert ray.get(x) == "1 2"
assert kwargs_exception_thrown
@ray.remote
def f1(*args):
return args
@ray.remote
def f2(x, y, *args):
return x, y, args
assert ray.get(f1.remote()) == ()
assert ray.get(f1.remote(1)) == (1, )
assert ray.get(f1.remote(1, 2, 3)) == (1, 2, 3)
with pytest.raises(Exception):
f2.remote()
with pytest.raises(Exception):
f2.remote(1)
assert ray.get(f2.remote(1, 2)) == (1, 2, ())
assert ray.get(f2.remote(1, 2, 3)) == (1, 2, (3, ))
assert ray.get(f2.remote(1, 2, 3, 4)) == (1, 2, (3, 4))
def testNoArgs(self):
@ray.remote
def no_op():
pass
self.init_ray()
ray.get(no_op.remote())
def test_defining_remote_functions(shutdown_only):
ray.init(num_cpus=3)
# Test that we can define a remote function in the shell.
@ray.remote
def f(x):
return x + 1
assert ray.get(f.remote(0)) == 1
# Test that we can redefine the remote function.
@ray.remote
def f(x):
return x + 10
while True:
val = ray.get(f.remote(0))
assert val in [1, 10]
if val == 10:
break
else:
print("Still using old definition of f, trying again.")
# Test that we can close over plain old data.
data = [
np.zeros([3, 5]), (1, 2, "a"), [0.0, 1.0, 1 << 62], 1 << 60, {
"a": np.zeros(3)
}
]
@ray.remote
def g():
return data
ray.get(g.remote())
# Test that we can close over modules.
@ray.remote
def h():
return np.zeros([3, 5])
assert_equal(ray.get(h.remote()), np.zeros([3, 5]))
@ray.remote
def j():
return time.time()
ray.get(j.remote())
# Test that we can define remote functions that call other remote
# functions.
@ray.remote
def k(x):
return x + 1
@ray.remote
def k2(x):
return ray.get(k.remote(x))
@ray.remote
def m(x):
return ray.get(k2.remote(x))
assert ray.get(k.remote(1)) == 2
assert ray.get(k2.remote(1)) == 2
assert ray.get(m.remote(1)) == 2
def test_submit_api(shutdown_only):
ray.init(num_cpus=1, num_gpus=1, resources={"Custom": 1})
@ray.remote
def f(n):
return list(range(n))
@ray.remote
def g():
return ray.get_gpu_ids()
assert f._submit([0], num_return_vals=0) is None
id1 = f._submit(args=[1], num_return_vals=1)
assert ray.get(id1) == [0]
id1, id2 = f._submit(args=[2], num_return_vals=2)
assert ray.get([id1, id2]) == [0, 1]
id1, id2, id3 = f._submit(args=[3], num_return_vals=3)
assert ray.get([id1, id2, id3]) == [0, 1, 2]
assert ray.get(
g._submit(
args=[], num_cpus=1, num_gpus=1,
resources={"Custom": 1})) == [0]
infeasible_id = g._submit(args=[], resources={"NonexistentCustom": 1})
ready_ids, remaining_ids = ray.wait([infeasible_id], timeout=50)
assert len(ready_ids) == 0
assert len(remaining_ids) == 1
@ray.remote
class Actor(object):
def __init__(self, x, y=0):
self.x = x
self.y = y
def method(self, a, b=0):
return self.x, self.y, a, b
def gpu_ids(self):
return ray.get_gpu_ids()
a = Actor._submit(
args=[0], kwargs={"y": 1}, num_gpus=1, resources={"Custom": 1})
id1, id2, id3, id4 = a.method._submit(
args=["test"], kwargs={"b": 2}, num_return_vals=4)
assert ray.get([id1, id2, id3, id4]) == [0, 1, "test", 2]
def test_get_multiple(shutdown_only):
ray.init(num_cpus=1)
object_ids = [ray.put(i) for i in range(10)]
assert ray.get(object_ids) == list(range(10))
# Get a random choice of object IDs with duplicates.
indices = list(np.random.choice(range(10), 5))
indices += indices
results = ray.get([object_ids[i] for i in indices])
assert results == indices
def test_get_multiple_experimental(shutdown_only):
ray.init(num_cpus=1)
object_ids = [ray.put(i) for i in range(10)]
object_ids_tuple = tuple(object_ids)
assert ray.experimental.get(object_ids_tuple) == list(range(10))
object_ids_nparray = np.array(object_ids)
assert ray.experimental.get(object_ids_nparray) == list(range(10))
def test_get_dict(shutdown_only):
ray.init(num_cpus=1)
d = {str(i): ray.put(i) for i in range(5)}
for i in range(5, 10):
d[str(i)] = i
result = ray.experimental.get(d)
expected = {str(i): i for i in range(10)}
assert result == expected
def test_wait(shutdown_only):
ray.init(num_cpus=1)
@ray.remote
def f(delay):
time.sleep(delay)
return 1
objectids = [f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)]
ready_ids, remaining_ids = ray.wait(objectids)
assert len(ready_ids) == 1
assert len(remaining_ids) == 3
ready_ids, remaining_ids = ray.wait(objectids, num_returns=4)
assert set(ready_ids) == set(objectids)
assert remaining_ids == []
objectids = [f.remote(0.5), f.remote(0.5), f.remote(0.5), f.remote(0.5)]
start_time = time.time()
ready_ids, remaining_ids = ray.wait(objectids, timeout=1750, num_returns=4)
assert time.time() - start_time < 2
assert len(ready_ids) == 3
assert len(remaining_ids) == 1
ray.wait(objectids)
objectids = [f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)]
start_time = time.time()
ready_ids, remaining_ids = ray.wait(objectids, timeout=5000)
assert time.time() - start_time < 5
assert len(ready_ids) == 1
assert len(remaining_ids) == 3
# Verify that calling wait with duplicate object IDs throws an
# exception.
x = ray.put(1)
with pytest.raises(Exception):
ray.wait([x, x])
# Make sure it is possible to call wait with an empty list.
ready_ids, remaining_ids = ray.wait([])
assert ready_ids == []
assert remaining_ids == []
# Test semantics of num_returns with no timeout.
oids = [ray.put(i) for i in range(10)]
(found, rest) = ray.wait(oids, num_returns=2)
assert len(found) == 2
assert len(rest) == 8
# Verify that incorrect usage raises a TypeError.
x = ray.put(1)
with pytest.raises(TypeError):
ray.wait(x)
with pytest.raises(TypeError):
ray.wait(1)
with pytest.raises(TypeError):
ray.wait([1])
def test_wait_iterables(shutdown_only):
ray.init(num_cpus=1)
@ray.remote
def f(delay):
time.sleep(delay)
return 1
objectids = (f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5))
ready_ids, remaining_ids = ray.experimental.wait(objectids)
assert len(ready_ids) == 1
assert len(remaining_ids) == 3
objectids = np.array(
[f.remote(1.0),
f.remote(0.5),
f.remote(0.5),
f.remote(0.5)])
ready_ids, remaining_ids = ray.experimental.wait(objectids)
assert len(ready_ids) == 1
assert len(remaining_ids) == 3
def test_multiple_waits_and_gets(shutdown_only):
# It is important to use three workers here, so that the three tasks
# launched in this experiment can run at the same time.
ray.init(num_cpus=3)
@ray.remote
def f(delay):
time.sleep(delay)
return 1
@ray.remote
def g(l):
# The argument l should be a list containing one object ID.
ray.wait([l[0]])
@ray.remote
def h(l):
# The argument l should be a list containing one object ID.
ray.get(l[0])
# Make sure that multiple wait requests involving the same object ID
# all return.
x = f.remote(1)
ray.get([g.remote([x]), g.remote([x])])
# Make sure that multiple get requests involving the same object ID all
# return.
x = f.remote(1)
ray.get([h.remote([x]), h.remote([x])])
def test_caching_functions_to_run(shutdown_only):
# Test that we export functions to run on all workers before the driver
# is connected.
def f(worker_info):
sys.path.append(1)
ray.worker.global_worker.run_function_on_all_workers(f)
def f(worker_info):
sys.path.append(2)
ray.worker.global_worker.run_function_on_all_workers(f)
def g(worker_info):
sys.path.append(3)
ray.worker.global_worker.run_function_on_all_workers(g)
def f(worker_info):
sys.path.append(4)
ray.worker.global_worker.run_function_on_all_workers(f)
ray.init(num_cpus=1)
@ray.remote
def get_state():
time.sleep(1)
return sys.path[-4], sys.path[-3], sys.path[-2], sys.path[-1]
res1 = get_state.remote()
res2 = get_state.remote()
assert ray.get(res1) == (1, 2, 3, 4)
assert ray.get(res2) == (1, 2, 3, 4)
# Clean up the path on the workers.
def f(worker_info):
sys.path.pop()
sys.path.pop()
sys.path.pop()
sys.path.pop()
ray.worker.global_worker.run_function_on_all_workers(f)
def test_running_function_on_all_workers(shutdown_only):
ray.init(num_cpus=1)
def f(worker_info):
sys.path.append("fake_directory")
ray.worker.global_worker.run_function_on_all_workers(f)
@ray.remote
def get_path1():
return sys.path
assert "fake_directory" == ray.get(get_path1.remote())[-1]
def f(worker_info):
sys.path.pop(-1)
ray.worker.global_worker.run_function_on_all_workers(f)
# Create a second remote function to guarantee that when we call
# get_path2.remote(), the second function to run will have been run on
# the worker.
@ray.remote
def get_path2():
return sys.path
assert "fake_directory" not in ray.get(get_path2.remote())
def test_profiling_api(shutdown_only):
ray.init(num_cpus=2)
@ray.remote
def f():
with ray.profile(
"custom_event",
extra_data={"name": "custom name"}) as ray_prof:
ray_prof.set_attribute("key", "value")
ray.put(1)
object_id = f.remote()
ray.wait([object_id])
ray.get(object_id)
# Wait until all of the profiling information appears in the profile
# table.
timeout_seconds = 20
start_time = time.time()
while True:
if time.time() - start_time > timeout_seconds:
raise Exception("Timed out while waiting for information in "
"profile table.")
profile_data = ray.global_state.chrome_tracing_dump()
event_types = {event["cat"] for event in profile_data}
expected_types = [
"get_task",
"task",
"task:deserialize_arguments",
"task:execute",
"task:store_outputs",
"wait_for_function",
"ray.get",
"ray.put",
"ray.wait",
"submit_task",
"fetch_and_run_function",
"register_remote_function",
"custom_event", # This is the custom one from ray.profile.
]
if all(expected_type in event_types
for expected_type in expected_types):
break
def test_identical_function_names(shutdown_only):
# Define a bunch of remote functions and make sure that we don't
# accidentally call an older version.
ray.init(num_cpus=1)
num_calls = 200
@ray.remote
def f():
return 1
results1 = [f.remote() for _ in range(num_calls)]
@ray.remote
def f():
return 2
results2 = [f.remote() for _ in range(num_calls)]
@ray.remote
def f():
return 3
results3 = [f.remote() for _ in range(num_calls)]
@ray.remote
def f():
return 4
results4 = [f.remote() for _ in range(num_calls)]
@ray.remote
def f():
return 5
results5 = [f.remote() for _ in range(num_calls)]
assert ray.get(results1) == num_calls * [1]
assert ray.get(results2) == num_calls * [2]
assert ray.get(results3) == num_calls * [3]
assert ray.get(results4) == num_calls * [4]
assert ray.get(results5) == num_calls * [5]
@ray.remote
def g():
return 1
@ray.remote # noqa: F811
def g():
return 2
@ray.remote # noqa: F811
def g():
return 3
@ray.remote # noqa: F811
def g():
return 4
@ray.remote # noqa: F811
def g():
return 5
result_values = ray.get([g.remote() for _ in range(num_calls)])
assert result_values == num_calls * [5]
def test_illegal_api_calls(shutdown_only):
ray.init(num_cpus=1)
# Verify that we cannot call put on an ObjectID.
x = ray.put(1)
with pytest.raises(Exception):
ray.put(x)
# Verify that we cannot call get on a regular value.
with pytest.raises(Exception):
ray.get(3)
def test_multithreading(shutdown_only):
ray.init(num_cpus=1)
@ray.remote
def f():
pass
def g(n):
for _ in range(1000 // n):
ray.get([f.remote() for _ in range(n)])
res = [ray.put(i) for i in range(1000 // n)]
ray.wait(res, len(res))
def test_multi_threading():
threads = [
threading.Thread(target=g, args=(n, ))
for n in [1, 5, 10, 100, 1000]
]
[thread.start() for thread in threads]
[thread.join() for thread in threads]
@ray.remote
def test_multi_threading_in_worker():
test_multi_threading()
# test multi-threading in the driver
test_multi_threading()
# test multi-threading in the worker
ray.get(test_multi_threading_in_worker.remote())
def test_free_objects_multi_node(shutdown_only):
ray.worker._init(
start_ray_local=True,
num_local_schedulers=3,
num_workers=1,
num_cpus=[1, 1, 1],
resources=[{
"Custom0": 1
}, {
"Custom1": 1
}, {
"Custom2": 1
}])
@ray.remote(resources={"Custom0": 1})
def run_on_0():
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"Custom1": 1})
def run_on_1():
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"Custom2": 1})
def run_on_2():
return ray.worker.global_worker.plasma_client.store_socket_name
def create():
a = run_on_0.remote()
b = run_on_1.remote()
c = run_on_2.remote()
(l1, l2) = ray.wait([a, b, c], num_returns=3)
assert len(l1) == 3
assert len(l2) == 0
return (a, b, c)
def flush():
# Flush the Release History.
# Current Plasma Client Cache will maintain 64-item list.
# If the number changed, this will fail.
print("Start Flush!")
for i in range(64):
ray.get([run_on_0.remote(), run_on_1.remote(), run_on_2.remote()])
print("Flush finished!")
def run_one_test(local_only):
(a, b, c) = create()
# The three objects should be generated on different object stores.
assert ray.get(a) != ray.get(b)
assert ray.get(a) != ray.get(c)
assert ray.get(c) != ray.get(b)
ray.internal.free([a, b, c], local_only=local_only)
flush()
return (a, b, c)
# Case 1: run this local_only=False. All 3 objects will be deleted.
(a, b, c) = run_one_test(False)
(l1, l2) = ray.wait([a, b, c], timeout=10, num_returns=1)
# All the objects are deleted.
assert len(l1) == 0
assert len(l2) == 3
# Case 2: run this local_only=True. Only 1 object will be deleted.
(a, b, c) = run_one_test(True)
(l1, l2) = ray.wait([a, b, c], timeout=10, num_returns=3)
# One object is deleted and 2 objects are not.
assert len(l1) == 2
assert len(l2) == 1
# The deleted object will have the same store with the driver.
local_return = ray.worker.global_worker.plasma_client.store_socket_name
for object_id in l1:
assert ray.get(object_id) != local_return
def test_local_mode(shutdown_only):
@ray.remote
def local_mode_f():
return np.array([0, 0])
@ray.remote
def local_mode_g(x):
x[0] = 1
return x
ray.init(local_mode=True)
@ray.remote
def f():
return np.ones([3, 4, 5])
xref = f.remote()
# Remote functions should return by value.
assert_equal(xref, np.ones([3, 4, 5]))
# Check that ray.get is the identity.
assert_equal(xref, ray.get(xref))
y = np.random.normal(size=[11, 12])
# Check that ray.put is the identity.
assert_equal(y, ray.put(y))
# Make sure objects are immutable, this example is why we need to copy
# arguments before passing them into remote functions in python mode
aref = local_mode_f.remote()
assert_equal(aref, np.array([0, 0]))
bref = local_mode_g.remote(aref)
# Make sure local_mode_g does not mutate aref.
assert_equal(aref, np.array([0, 0]))
assert_equal(bref, np.array([1, 0]))
# wait should return the first num_returns values passed in as the
# first list and the remaining values as the second list
num_returns = 5
object_ids = [ray.put(i) for i in range(20)]
ready, remaining = ray.wait(
object_ids, num_returns=num_returns, timeout=None)
assert_equal(ready, object_ids[:num_returns])
assert_equal(remaining, object_ids[num_returns:])
# Test actors in LOCAL_MODE.
@ray.remote
class LocalModeTestClass(object):
def __init__(self, array):
self.array = array
def set_array(self, array):
self.array = array
def get_array(self):
return self.array
def modify_and_set_array(self, array):
array[0] = -1
self.array = array
test_actor = LocalModeTestClass.remote(np.arange(10))
# Remote actor functions should return by value
assert_equal(test_actor.get_array.remote(), np.arange(10))
test_array = np.arange(10)
# Remote actor functions should not mutate arguments
test_actor.modify_and_set_array.remote(test_array)
assert_equal(test_array, np.arange(10))
# Remote actor functions should keep state
test_array[0] = -1
assert_equal(test_array, test_actor.get_array.remote())
# Check that actor handles work in Python mode.
@ray.remote
def use_actor_handle(handle):
array = np.ones(10)
handle.set_array.remote(array)
assert np.alltrue(array == ray.get(handle.get_array.remote()))
ray.get(use_actor_handle.remote(test_actor))
def test_resource_constraints(shutdown_only):
num_workers = 20
ray.init(num_workers=num_workers, num_cpus=10, num_gpus=2)
@ray.remote(num_cpus=0)
def get_worker_id():
time.sleep(0.1)
return os.getpid()
# Attempt to wait for all of the workers to start up.
while True:
if len(
set(
ray.get([
get_worker_id.remote() for _ in range(num_workers)
]))) == num_workers:
break
time_buffer = 0.3
# At most 10 copies of this can run at once.
@ray.remote(num_cpus=1)
def f(n):
time.sleep(n)
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(10)])
duration = time.time() - start_time
assert duration < 0.5 + time_buffer
assert duration > 0.5
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(11)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
@ray.remote(num_cpus=3)
def f(n):
time.sleep(n)
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(3)])
duration = time.time() - start_time
assert duration < 0.5 + time_buffer
assert duration > 0.5
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(4)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
@ray.remote(num_gpus=1)
def f(n):
time.sleep(n)
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(2)])
duration = time.time() - start_time
assert duration < 0.5 + time_buffer
assert duration > 0.5
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(3)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
start_time = time.time()
ray.get([f.remote(0.5) for _ in range(4)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
def test_multi_resource_constraints(shutdown_only):
num_workers = 20
ray.init(num_workers=num_workers, num_cpus=10, num_gpus=10)
@ray.remote(num_cpus=0)
def get_worker_id():
time.sleep(0.1)
return os.getpid()
# Attempt to wait for all of the workers to start up.
while True:
if len(
set(
ray.get([
get_worker_id.remote() for _ in range(num_workers)
]))) == num_workers:
break
@ray.remote(num_cpus=1, num_gpus=9)
def f(n):
time.sleep(n)
@ray.remote(num_cpus=9, num_gpus=1)
def g(n):
time.sleep(n)
time_buffer = 0.3
start_time = time.time()
ray.get([f.remote(0.5), g.remote(0.5)])
duration = time.time() - start_time
assert duration < 0.5 + time_buffer
assert duration > 0.5
start_time = time.time()
ray.get([f.remote(0.5), f.remote(0.5)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
start_time = time.time()
ray.get([g.remote(0.5), g.remote(0.5)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
start_time = time.time()
ray.get([f.remote(0.5), f.remote(0.5), g.remote(0.5), g.remote(0.5)])
duration = time.time() - start_time
assert duration < 1 + time_buffer
assert duration > 1
def test_gpu_ids(shutdown_only):
num_gpus = 10
ray.init(num_cpus=10, num_gpus=num_gpus)
@ray.remote(num_gpus=0)
def f0():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 0
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
@ray.remote(num_gpus=1)
def f1():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
@ray.remote(num_gpus=2)
def f2():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 2
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
@ray.remote(num_gpus=3)
def f3():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 3
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
@ray.remote(num_gpus=4)
def f4():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 4
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
@ray.remote(num_gpus=5)
def f5():
time.sleep(0.1)
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 5
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
for gpu_id in gpu_ids:
assert gpu_id in range(num_gpus)
return gpu_ids
# Wait for all workers to start up.
@ray.remote
def f():
time.sleep(0.1)
return os.getpid()
start_time = time.time()
while True:
if len(set(ray.get([f.remote() for _ in range(10)]))) == 10:
break
if time.time() > start_time + 10:
raise Exception("Timed out while waiting for workers to start "
"up.")
list_of_ids = ray.get([f0.remote() for _ in range(10)])
assert list_of_ids == 10 * [[]]
list_of_ids = ray.get([f1.remote() for _ in range(10)])
set_of_ids = {tuple(gpu_ids) for gpu_ids in list_of_ids}
assert set_of_ids == {(i, ) for i in range(10)}
list_of_ids = ray.get([f2.remote(), f4.remote(), f4.remote()])
all_ids = [gpu_id for gpu_ids in list_of_ids for gpu_id in gpu_ids]
assert set(all_ids) == set(range(10))
remaining = [f5.remote() for _ in range(20)]
for _ in range(10):
t1 = time.time()
ready, remaining = ray.wait(remaining, num_returns=2)
t2 = time.time()
# There are only 10 GPUs, and each task uses 2 GPUs, so there
# should only be 2 tasks scheduled at a given time, so if we wait
# for 2 tasks to finish, then it should take at least 0.1 seconds
# for each pair of tasks to finish.
assert t2 - t1 > 0.09
list_of_ids = ray.get(ready)
all_ids = [gpu_id for gpu_ids in list_of_ids for gpu_id in gpu_ids]
# Commenting out the below assert because it seems to fail a lot.
# assert set(all_ids) == set(range(10))
# Test that actors have CUDA_VISIBLE_DEVICES set properly.
@ray.remote
class Actor0(object):
def __init__(self):
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 0
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
# Set self.x to make sure that we got here.
self.x = 1
def test(self):
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 0
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
return self.x
@ray.remote(num_gpus=1)
class Actor1(object):
def __init__(self):
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
# Set self.x to make sure that we got here.
self.x = 1
def test(self):
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join(
[str(i) for i in gpu_ids]))
return self.x
a0 = Actor0.remote()
ray.get(a0.test.remote())
a1 = Actor1.remote()
ray.get(a1.test.remote())
def test_zero_cpus(shutdown_only):
ray.init(num_cpus=0)
@ray.remote(num_cpus=0)
def f():
return 1
# The task should be able to execute.
ray.get(f.remote())
def test_zero_cpus_actor(shutdown_only):
ray.worker._init(
start_ray_local=True, num_local_schedulers=2, num_cpus=[0, 2])
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote
class Foo(object):
def method(self):
return ray.worker.global_worker.plasma_client.store_socket_name
# Make sure tasks and actors run on the remote local scheduler.
a = Foo.remote()
assert ray.get(a.method.remote()) != local_plasma
def test_fractional_resources(shutdown_only):
ray.init(num_cpus=6, num_gpus=3, resources={"Custom": 1})
@ray.remote(num_gpus=0.5)
class Foo1(object):
def method(self):
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
return gpu_ids[0]
foos = [Foo1.remote() for _ in range(6)]
gpu_ids = ray.get([f.method.remote() for f in foos])
for i in range(3):
assert gpu_ids.count(i) == 2
del foos
@ray.remote
class Foo2(object):
def method(self):
pass
# Create an actor that requires 0.7 of the custom resource.
f1 = Foo2._submit([], {}, resources={"Custom": 0.7})
ray.get(f1.method.remote())
# Make sure that we cannot create an actor that requires 0.7 of the
# custom resource. TODO(rkn): Re-enable this once ray.wait is
# implemented.
f2 = Foo2._submit([], {}, resources={"Custom": 0.7})
ready, _ = ray.wait([f2.method.remote()], timeout=500)
assert len(ready) == 0
# Make sure we can start an actor that requries only 0.3 of the custom
# resource.
f3 = Foo2._submit([], {}, resources={"Custom": 0.3})
ray.get(f3.method.remote())
del f1, f3
# Make sure that we get exceptions if we submit tasks that require a
# fractional number of resources greater than 1.
@ray.remote(num_cpus=1.5)
def test():
pass
with pytest.raises(ValueError):
test.remote()
with pytest.raises(ValueError):
Foo2._submit([], {}, resources={"Custom": 1.5})
def test_multiple_local_schedulers(shutdown_only):
# This test will define a bunch of tasks that can only be assigned to
# specific local schedulers, and we will check that they are assigned
# to the correct local schedulers.
address_info = ray.worker._init(
start_ray_local=True,
num_local_schedulers=3,
num_workers=1,
num_cpus=[100, 5, 10],
num_gpus=[0, 5, 1])
# Define a bunch of remote functions that all return the socket name of
# the plasma store. Since there is a one-to-one correspondence between
# plasma stores and local schedulers (at least right now), this can be
# used to identify which local scheduler the task was assigned to.
# This must be run on the zeroth local scheduler.
@ray.remote(num_cpus=11)
def run_on_0():
return ray.worker.global_worker.plasma_client.store_socket_name
# This must be run on the first local scheduler.
@ray.remote(num_gpus=2)
def run_on_1():
return ray.worker.global_worker.plasma_client.store_socket_name
# This must be run on the second local scheduler.
@ray.remote(num_cpus=6, num_gpus=1)
def run_on_2():
return ray.worker.global_worker.plasma_client.store_socket_name
# This can be run anywhere.
@ray.remote(num_cpus=0, num_gpus=0)
def run_on_0_1_2():
return ray.worker.global_worker.plasma_client.store_socket_name
# This must be run on the first or second local scheduler.
@ray.remote(num_gpus=1)
def run_on_1_2():
return ray.worker.global_worker.plasma_client.store_socket_name
# This must be run on the zeroth or second local scheduler.
@ray.remote(num_cpus=8)
def run_on_0_2():
return ray.worker.global_worker.plasma_client.store_socket_name
def run_lots_of_tasks():
names = []
results = []
for i in range(100):
index = np.random.randint(6)
if index == 0:
names.append("run_on_0")
results.append(run_on_0.remote())
elif index == 1:
names.append("run_on_1")
results.append(run_on_1.remote())
elif index == 2:
names.append("run_on_2")
results.append(run_on_2.remote())
elif index == 3:
names.append("run_on_0_1_2")
results.append(run_on_0_1_2.remote())
elif index == 4:
names.append("run_on_1_2")
results.append(run_on_1_2.remote())
elif index == 5:
names.append("run_on_0_2")
results.append(run_on_0_2.remote())
return names, results
store_names = address_info["object_store_addresses"]
def validate_names_and_results(names, results):
for name, result in zip(names, ray.get(results)):
if name == "run_on_0":
assert result in [store_names[0]]
elif name == "run_on_1":
assert result in [store_names[1]]
elif name == "run_on_2":
assert result in [store_names[2]]
elif name == "run_on_0_1_2":
assert (result in [
store_names[0], store_names[1], store_names[2]
])
elif name == "run_on_1_2":
assert result in [store_names[1], store_names[2]]
elif name == "run_on_0_2":
assert result in [store_names[0], store_names[2]]
else:
raise Exception("This should be unreachable.")
assert set(ray.get(results)) == set(store_names)
names, results = run_lots_of_tasks()
validate_names_and_results(names, results)
# Make sure the same thing works when this is nested inside of a task.
@ray.remote
def run_nested1():
names, results = run_lots_of_tasks()
return names, results
@ray.remote
def run_nested2():
names, results = ray.get(run_nested1.remote())
return names, results
names, results = ray.get(run_nested2.remote())
validate_names_and_results(names, results)
def test_custom_resources(shutdown_only):
ray.worker._init(
start_ray_local=True,
num_local_schedulers=2,
num_cpus=[3, 3],
resources=[{
"CustomResource": 0
}, {
"CustomResource": 1
}])
@ray.remote
def f():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource": 1})
def g():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource": 1})
def h():
ray.get([f.remote() for _ in range(5)])
return ray.worker.global_worker.plasma_client.store_socket_name
# The f tasks should be scheduled on both local schedulers.
assert len(set(ray.get([f.remote() for _ in range(50)]))) == 2
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# The g tasks should be scheduled only on the second local scheduler.
local_scheduler_ids = set(ray.get([g.remote() for _ in range(50)]))
assert len(local_scheduler_ids) == 1
assert list(local_scheduler_ids)[0] != local_plasma
# Make sure that resource bookkeeping works when a task that uses a
# custom resources gets blocked.
ray.get([h.remote() for _ in range(5)])
def test_two_custom_resources(shutdown_only):
ray.worker._init(
start_ray_local=True,
num_local_schedulers=2,
num_cpus=[3, 3],
resources=[{
"CustomResource1": 1,
"CustomResource2": 2
}, {
"CustomResource1": 3,
"CustomResource2": 4
}])
@ray.remote(resources={"CustomResource1": 1})
def f():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource2": 1})
def g():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource1": 1, "CustomResource2": 3})
def h():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource1": 4})
def j():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
@ray.remote(resources={"CustomResource3": 1})
def k():
time.sleep(0.001)
return ray.worker.global_worker.plasma_client.store_socket_name
# The f and g tasks should be scheduled on both local schedulers.
assert len(set(ray.get([f.remote() for _ in range(50)]))) == 2
assert len(set(ray.get([g.remote() for _ in range(50)]))) == 2
local_plasma = ray.worker.global_worker.plasma_client.store_socket_name
# The h tasks should be scheduled only on the second local scheduler.
local_scheduler_ids = set(ray.get([h.remote() for _ in range(50)]))
assert len(local_scheduler_ids) == 1
assert list(local_scheduler_ids)[0] != local_plasma
# Make sure that tasks with unsatisfied custom resource requirements do
# not get scheduled.
ready_ids, remaining_ids = ray.wait([j.remote(), k.remote()], timeout=500)
assert ready_ids == []
def test_many_custom_resources(shutdown_only):
num_custom_resources = 10000
total_resources = {
str(i): np.random.randint(1, 7)
for i in range(num_custom_resources)
}
ray.init(num_cpus=5, resources=total_resources)
def f():
return 1
remote_functions = []
for _ in range(20):
num_resources = np.random.randint(0, num_custom_resources + 1)
permuted_resources = np.random.permutation(
num_custom_resources)[:num_resources]
random_resources = {
str(i): total_resources[str(i)]
for i in permuted_resources
}
remote_function = ray.remote(resources=random_resources)(f)
remote_functions.append(remote_function)
remote_functions.append(ray.remote(f))
remote_functions.append(ray.remote(resources=total_resources)(f))
results = []
for remote_function in remote_functions:
results.append(remote_function.remote())
results.append(remote_function.remote())
results.append(remote_function.remote())
ray.get(results)
@pytest.fixture
def save_gpu_ids_shutdown_only():
# Record the curent value of this environment variable so that we can
# reset it after the test.
original_gpu_ids = os.environ.get("CUDA_VISIBLE_DEVICES", None)
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
# Reset the environment variable.
if original_gpu_ids is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = original_gpu_ids
else:
del os.environ["CUDA_VISIBLE_DEVICES"]
def test_specific_gpus(save_gpu_ids_shutdown_only):
allowed_gpu_ids = [4, 5, 6]
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
[str(i) for i in allowed_gpu_ids])
ray.init(num_gpus=3)
@ray.remote(num_gpus=1)
def f():
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 1
assert gpu_ids[0] in allowed_gpu_ids
@ray.remote(num_gpus=2)
def g():
gpu_ids = ray.get_gpu_ids()
assert len(gpu_ids) == 2
assert gpu_ids[0] in allowed_gpu_ids
assert gpu_ids[1] in allowed_gpu_ids
ray.get([f.remote() for _ in range(100)])
ray.get([g.remote() for _ in range(100)])
def test_no_workers(shutdown_only):
ray.init(num_cpus=1, num_workers=0)
@ray.remote
def f():
return 1
# Make sure we can call a remote function. This will require starting a
# new worker.
ray.get(f.remote())
ray.get([f.remote() for _ in range(100)])
def test_blocking_tasks(shutdown_only):
ray.init(num_cpus=1)
@ray.remote
def f(i, j):
return (i, j)
@ray.remote
def g(i):
# Each instance of g submits and blocks on the result of another
# remote task.
object_ids = [f.remote(i, j) for j in range(2)]
return ray.get(object_ids)
@ray.remote
def h(i):
# Each instance of g submits and blocks on the result of another
# remote task using ray.wait.
object_ids = [f.remote(i, j) for j in range(2)]
return ray.wait(object_ids, num_returns=len(object_ids))
ray.get([h.remote(i) for i in range(4)])
@ray.remote
def _sleep(i):
time.sleep(0.01)
return (i)
@ray.remote
def sleep():
# Each instance of sleep submits and blocks on the result of
# another remote task, which takes some time to execute.
ray.get([_sleep.remote(i) for i in range(10)])
ray.get(sleep.remote())
def test_max_call_tasks(shutdown_only):
ray.init(num_cpus=1)
@ray.remote(max_calls=1)
def f():
return os.getpid()
pid = ray.get(f.remote())
ray.test.test_utils.wait_for_pid_to_exit(pid)
@ray.remote(max_calls=2)
def f():
return os.getpid()
pid1 = ray.get(f.remote())
pid2 = ray.get(f.remote())
assert pid1 == pid2
ray.test.test_utils.wait_for_pid_to_exit(pid1)
def attempt_to_load_balance(remote_function,
args,
total_tasks,
num_local_schedulers,
minimum_count,
num_attempts=100):
attempts = 0
while attempts < num_attempts:
locations = ray.get(
[remote_function.remote(*args) for _ in range(total_tasks)])
names = set(locations)
counts = [locations.count(name) for name in names]
print("Counts are {}.".format(counts))
if (len(names) == num_local_schedulers
and all(count >= minimum_count for count in counts)):
break
attempts += 1
assert attempts < num_attempts
def test_load_balancing(shutdown_only):
# This test ensures that tasks are being assigned to all local
# schedulers in a roughly equal manner.
num_local_schedulers = 3
num_cpus = 7
ray.worker._init(
start_ray_local=True,
num_local_schedulers=num_local_schedulers,
num_cpus=num_cpus)
@ray.remote
def f():
time.sleep(0.01)
return ray.worker.global_worker.plasma_client.store_socket_name
attempt_to_load_balance(f, [], 100, num_local_schedulers, 10)
attempt_to_load_balance(f, [], 1000, num_local_schedulers, 100)
def test_load_balancing_with_dependencies(shutdown_only):
# This test ensures that tasks are being assigned to all local
# schedulers in a roughly equal manner even when the tasks have
# dependencies.
num_workers = 3
num_local_schedulers = 3
ray.worker._init(
start_ray_local=True,
num_workers=num_workers,
num_local_schedulers=num_local_schedulers,
num_cpus=1)
@ray.remote
def f(x):
time.sleep(0.010)
return ray.worker.global_worker.plasma_client.store_socket_name
# This object will be local to one of the local schedulers. Make sure
# this doesn't prevent tasks from being scheduled on other local
# schedulers.
x = ray.put(np.zeros(1000000))
attempt_to_load_balance(f, [x], 100, num_local_schedulers, 25)
def wait_for_num_tasks(num_tasks, timeout=10):
start_time = time.time()
while time.time() - start_time < timeout:
if len(ray.global_state.task_table()) >= num_tasks:
return
time.sleep(0.1)
raise Exception("Timed out while waiting for global state.")
def wait_for_num_objects(num_objects, timeout=10):
start_time = time.time()
while time.time() - start_time < timeout:
if len(ray.global_state.object_table()) >= num_objects:
return
time.sleep(0.1)
raise Exception("Timed out while waiting for global state.")
@pytest.mark.skipif(
os.environ.get("RAY_USE_NEW_GCS") == "on",
reason="New GCS API doesn't have a Python API yet.")
def test_global_state_api(shutdown_only):
with pytest.raises(Exception):
ray.global_state.object_table()
with pytest.raises(Exception):
ray.global_state.task_table()
with pytest.raises(Exception):
ray.global_state.client_table()
with pytest.raises(Exception):
ray.global_state.function_table()
with pytest.raises(Exception):
ray.global_state.log_files()
ray.init(num_cpus=5, num_gpus=3, resources={"CustomResource": 1})
resources = {"CPU": 5, "GPU": 3, "CustomResource": 1}
assert ray.global_state.cluster_resources() == resources
assert ray.global_state.object_table() == {}
driver_id = ray.experimental.state.binary_to_hex(
ray.worker.global_worker.worker_id)
driver_task_id = ray.experimental.state.binary_to_hex(
ray.worker.global_worker.current_task_id.id())
# One task is put in the task table which corresponds to this driver.
wait_for_num_tasks(1)
task_table = ray.global_state.task_table()
assert len(task_table) == 1
assert driver_task_id == list(task_table.keys())[0]
assert len(task_table[driver_task_id]) == 1
task_spec = task_table[driver_task_id][0]["TaskSpec"]
assert task_spec["TaskID"] == driver_task_id
assert task_spec["ActorID"] == ray_constants.ID_SIZE * "ff"
assert task_spec["Args"] == []
assert task_spec["DriverID"] == driver_id
assert task_spec["FunctionID"] == ray_constants.ID_SIZE * "ff"
assert task_spec["ReturnObjectIDs"] == []
client_table = ray.global_state.client_table()
node_ip_address = ray.worker.global_worker.node_ip_address
assert len(client_table) == 1
assert client_table[0]["NodeManagerAddress"] == node_ip_address
@ray.remote
def f(*xs):
return 1
x_id = ray.put(1)
result_id = f.remote(1, "hi", x_id)
# Wait for one additional task to complete.
wait_for_num_tasks(1 + 1)
task_table = ray.global_state.task_table()
assert len(task_table) == 1 + 1
task_id_set = set(task_table.keys())
task_id_set.remove(driver_task_id)
task_id = list(task_id_set)[0]
function_table = ray.global_state.function_table()
task_spec = task_table[task_id][0]["TaskSpec"]
assert task_spec["ActorID"] == ray_constants.ID_SIZE * "ff"
assert task_spec["Args"] == [1, "hi", x_id]
assert task_spec["DriverID"] == driver_id
assert task_spec["ReturnObjectIDs"] == [result_id]
function_table_entry = function_table[task_spec["FunctionID"]]
assert function_table_entry["Name"] == "runtest.f"
assert function_table_entry["DriverID"] == driver_id
assert function_table_entry["Module"] == "runtest"
assert task_table[task_id] == ray.global_state.task_table(task_id)
# Wait for two objects, one for the x_id and one for result_id.
wait_for_num_objects(2)
def wait_for_object_table():
timeout = 10
start_time = time.time()
while time.time() - start_time < timeout:
object_table = ray.global_state.object_table()
tables_ready = (object_table[x_id]["ManagerIDs"] is not None and
object_table[result_id]["ManagerIDs"] is not None)
if tables_ready:
return
time.sleep(0.1)
raise Exception("Timed out while waiting for object table to "
"update.")
object_table = ray.global_state.object_table()
assert len(object_table) == 2
assert len(object_table[x_id]) == 1
assert object_table[x_id][0]["IsEviction"] is False
assert object_table[x_id][0]["NumEvictions"] == 0
assert len(object_table[result_id]) == 1
assert object_table[result_id][0]["IsEviction"] is False
assert object_table[result_id][0]["NumEvictions"] == 0
assert object_table[x_id] == ray.global_state.object_table(x_id)
object_table_entry = ray.global_state.object_table(result_id)
assert object_table[result_id] == object_table_entry
@pytest.mark.skipif(
os.environ.get("RAY_USE_NEW_GCS") == "on",
reason="New GCS API doesn't have a Python API yet.")
def test_log_file_api(shutdown_only):
ray.init(num_cpus=1, redirect_worker_output=True)
message = "unique message"
@ray.remote
def f():
print(message)
# The call to sys.stdout.flush() seems to be necessary when using
# the system Python 2.7 on Ubuntu.
sys.stdout.flush()
ray.get(f.remote())
# Make sure that the message appears in the log files.
start_time = time.time()
found_message = False
while time.time() - start_time < 10:
log_files = ray.global_state.log_files()
for ip, innerdict in log_files.items():
for filename, contents in innerdict.items():
contents_str = "".join(contents)
if message in contents_str:
found_message = True
if found_message:
break
time.sleep(0.1)
assert found_message is True
@pytest.mark.skipif(
os.environ.get("RAY_USE_NEW_GCS") == "on",
reason="New GCS API doesn't have a Python API yet.")
def test_workers(shutdown_only):
num_workers = 3
ray.init(
redirect_worker_output=True,
num_cpus=num_workers,
num_workers=num_workers)
@ray.remote
def f():
return id(ray.worker.global_worker), os.getpid()
# Wait until all of the workers have started.
worker_ids = set()
while len(worker_ids) != num_workers:
worker_ids = set(ray.get([f.remote() for _ in range(10)]))
worker_info = ray.global_state.workers()
assert len(worker_info) >= num_workers
for worker_id, info in worker_info.items():
assert "node_ip_address" in info
assert "local_scheduler_socket" in info
assert "plasma_store_socket" in info
assert "stderr_file" in info
assert "stdout_file" in info
@pytest.mark.skip("This test does not work yet.")
@pytest.mark.skipif(
os.environ.get("RAY_USE_NEW_GCS") == "on",
reason="New GCS API doesn't have a Python API yet.")
def test_flush_api(shutdown_only):
ray.init(num_cpus=1)
@ray.remote
def f():
return 1
[ray.put(1) for _ in range(10)]
ray.get([f.remote() for _ in range(10)])
# Wait until all of the task and object information has been stored in
# Redis. Note that since a given key may be updated multiple times
# (e.g., multiple calls to TaskTableUpdate), this is an attempt to wait
# until all updates have happened. Note that in a real application we
# could encounter this kind of issue as well.
while True:
object_table = ray.global_state.object_table()
task_table = ray.global_state.task_table()
tables_ready = True
if len(object_table) != 20:
tables_ready = False
for object_info in object_table.values():
if len(object_info) != 5:
tables_ready = False
if (object_info["ManagerIDs"] is None
or object_info["DataSize"] == -1
or object_info["Hash"] == ""):
tables_ready = False
if len(task_table) != 10 + 1:
tables_ready = False
driver_task_id = ray.utils.binary_to_hex(
ray.worker.global_worker.current_task_id.id())
for info in task_table.values():
if info["State"] != ray.experimental.state.TASK_STATUS_DONE:
if info["TaskSpec"]["TaskID"] != driver_task_id:
tables_ready = False
if tables_ready:
break
# this test case is blocked sometimes, add this may fix the problem
time.sleep(0.1)
# Flush the tables.
ray.experimental.flush_redis_unsafe()
ray.experimental.flush_task_and_object_metadata_unsafe()
# Make sure the tables are empty.
assert len(ray.global_state.object_table()) == 0
assert len(ray.global_state.task_table()) == 0
# Run some more tasks.
ray.get([f.remote() for _ in range(10)])
while len(ray.global_state.task_table()) != 0:
time.sleep(0.1)
ray.experimental.flush_finished_tasks_unsafe()
# Make sure that we can call this method (but it won't do anything in
# this test case).
ray.experimental.flush_evicted_objects_unsafe()
@pytest.fixture
def shutdown_only_with_initialization_check():
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
assert not ray.is_initialized()
def test_initialized(shutdown_only_with_initialization_check):
assert not ray.is_initialized()
ray.init(num_cpus=0)
assert ray.is_initialized()
def test_initialized_local_mode(shutdown_only_with_initialization_check):
assert not ray.is_initialized()
ray.init(num_cpus=0, local_mode=True)
assert ray.is_initialized()
def test_wait_reconstruction(shutdown_only):
ray.init(num_cpus=1, object_store_memory=10**8)
@ray.remote
def f():
return np.zeros(6 * 10**7, dtype=np.uint8)
x_id = f.remote()
ray.wait([x_id])
ray.wait([f.remote()])
assert not ray.worker.global_worker.plasma_client.contains(
ray.pyarrow.plasma.ObjectID(x_id.id()))
ready_ids, _ = ray.wait([x_id])
assert len(ready_ids) == 1