ray/test/microbenchmarks.py
Robert Nishihara eda6ebb87d Convert some unittests to pytest. (#2779)
* Convert multi_node_test.py to pytest.

* Convert array_test.py to pytest.

* Convert failure_test.py to pytest.

* Convert microbenchmarks to pytest.

* Convert component_failures_test.py to pytest and some minor quotes changes.

* Convert tensorflow_test.py to pytest.

* Convert actor_test.py to pytest.

* Fix.

* Fix
2018-08-31 11:24:15 -07:00

119 lines
4.1 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pytest
import os
import ray
import time
import numpy as np
@pytest.fixture
def ray_start_regular():
# Start the Ray processes.
ray.init(num_cpus=3)
yield None
# The code after the yield will run as teardown code.
ray.shutdown()
def test_timing(ray_start_regular):
@ray.remote
def empty_function():
pass
@ray.remote
def trivial_function():
return 1
# Measure the time required to submit a remote task to the scheduler.
elapsed_times = []
for _ in range(1000):
start_time = time.time()
empty_function.remote()
end_time = time.time()
elapsed_times.append(end_time - start_time)
elapsed_times = np.sort(elapsed_times)
average_elapsed_time = sum(elapsed_times) / 1000
print("Time required to submit an empty function call:")
print(" Average: {}".format(average_elapsed_time))
print(" 90th percentile: {}".format(elapsed_times[900]))
print(" 99th percentile: {}".format(elapsed_times[990]))
print(" worst: {}".format(elapsed_times[999]))
# average_elapsed_time should be about 0.00038.
# Measure the time required to submit a remote task to the scheduler
# (where the remote task returns one value).
elapsed_times = []
for _ in range(1000):
start_time = time.time()
trivial_function.remote()
end_time = time.time()
elapsed_times.append(end_time - start_time)
elapsed_times = np.sort(elapsed_times)
average_elapsed_time = sum(elapsed_times) / 1000
print("Time required to submit a trivial function call:")
print(" Average: {}".format(average_elapsed_time))
print(" 90th percentile: {}".format(elapsed_times[900]))
print(" 99th percentile: {}".format(elapsed_times[990]))
print(" worst: {}".format(elapsed_times[999]))
# average_elapsed_time should be about 0.001.
# Measure the time required to submit a remote task to the scheduler
# and get the result.
elapsed_times = []
for _ in range(1000):
start_time = time.time()
x = trivial_function.remote()
ray.get(x)
end_time = time.time()
elapsed_times.append(end_time - start_time)
elapsed_times = np.sort(elapsed_times)
average_elapsed_time = sum(elapsed_times) / 1000
print("Time required to submit a trivial function call and get the "
"result:")
print(" Average: {}".format(average_elapsed_time))
print(" 90th percentile: {}".format(elapsed_times[900]))
print(" 99th percentile: {}".format(elapsed_times[990]))
print(" worst: {}".format(elapsed_times[999]))
# average_elapsed_time should be about 0.0013.
# Measure the time required to do do a put.
elapsed_times = []
for _ in range(1000):
start_time = time.time()
ray.put(1)
end_time = time.time()
elapsed_times.append(end_time - start_time)
elapsed_times = np.sort(elapsed_times)
average_elapsed_time = sum(elapsed_times) / 1000
print("Time required to put an int:")
print(" Average: {}".format(average_elapsed_time))
print(" 90th percentile: {}".format(elapsed_times[900]))
print(" 99th percentile: {}".format(elapsed_times[990]))
print(" worst: {}".format(elapsed_times[999]))
# average_elapsed_time should be about 0.00087.
def test_cache(ray_start_regular):
A = np.random.rand(1, 1000000)
v = np.random.rand(1000000)
A_id = ray.put(A)
v_id = ray.put(v)
a = time.time()
for i in range(100):
A.dot(v)
b = time.time() - a
c = time.time()
for i in range(100):
ray.get(A_id).dot(ray.get(v_id))
d = time.time() - c
if d > 1.5 * b:
if os.getenv("TRAVIS") is None:
raise Exception("The caching test was too slow. "
"d = {}, b = {}".format(d, b))
else:
print("WARNING: The caching test was too slow. "
"d = {}, b = {}".format(d, b))