mirror of
https://github.com/vale981/ray
synced 2025-03-09 04:46:38 -04:00
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.ppo as ppo
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
|
|
from ray.rllib.policy.policy import LEARNER_STATS_KEY
|
|
from ray.rllib.utils.test_utils import check_compute_single_action, \
|
|
framework_iterator
|
|
|
|
|
|
class TestDDPPO(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_ddppo_compilation(self):
|
|
"""Test whether a DDPPOTrainer can be built with both frameworks."""
|
|
config = ppo.ddppo.DEFAULT_CONFIG.copy()
|
|
config["num_gpus_per_worker"] = 0
|
|
num_iterations = 2
|
|
|
|
for _ in framework_iterator(config, "torch"):
|
|
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
for i in range(num_iterations):
|
|
trainer.train()
|
|
check_compute_single_action(trainer)
|
|
trainer.stop()
|
|
|
|
def test_ddppo_schedule(self):
|
|
"""Test whether lr_schedule will anneal lr to 0"""
|
|
config = ppo.ddppo.DEFAULT_CONFIG.copy()
|
|
config["num_gpus_per_worker"] = 0
|
|
config["lr_schedule"] = [[0, config["lr"]], [1000, 0.0]]
|
|
num_iterations = 3
|
|
|
|
for _ in framework_iterator(config, "torch"):
|
|
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
for _ in range(num_iterations):
|
|
result = trainer.train()
|
|
lr = result["info"]["learner"][DEFAULT_POLICY_ID][
|
|
LEARNER_STATS_KEY]["cur_lr"]
|
|
trainer.stop()
|
|
assert lr == 0.0, "lr should anneal to 0.0"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|