mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
260 lines
9.2 KiB
Python
260 lines
9.2 KiB
Python
"""An example of customizing PPO to leverage a centralized critic.
|
|
|
|
Here the model and policy are hard-coded to implement a centralized critic
|
|
for TwoStepGame, but you can adapt this for your own use cases.
|
|
|
|
Compared to simply running `rllib/examples/two_step_game.py --run=PPO`,
|
|
this centralized critic version reaches vf_explained_variance=1.0 more stably
|
|
since it takes into account the opponent actions as well as the policy's.
|
|
Note that this is also using two independent policies instead of weight-sharing
|
|
with one.
|
|
|
|
See also: centralized_critic_2.py for a simpler approach that instead
|
|
modifies the environment.
|
|
"""
|
|
|
|
import argparse
|
|
import numpy as np
|
|
from gym.spaces import Discrete
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.ppo.ppo import PPOTrainer
|
|
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy, KLCoeffMixin, \
|
|
ppo_surrogate_loss as tf_loss
|
|
from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy, \
|
|
KLCoeffMixin as TorchKLCoeffMixin, ppo_surrogate_loss as torch_loss
|
|
from ray.rllib.evaluation.postprocessing import compute_advantages, \
|
|
Postprocessing
|
|
from ray.rllib.examples.env.two_step_game import TwoStepGame
|
|
from ray.rllib.examples.models.centralized_critic_models import \
|
|
CentralizedCriticModel, TorchCentralizedCriticModel
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy import LearningRateSchedule, \
|
|
EntropyCoeffSchedule
|
|
from ray.rllib.policy.torch_policy import LearningRateSchedule as TorchLR, \
|
|
EntropyCoeffSchedule as TorchEntropyCoeffSchedule
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.rllib.utils.tf_ops import explained_variance, make_tf_callable
|
|
from ray.rllib.utils.torch_ops import convert_to_torch_tensor
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, nn = try_import_torch()
|
|
|
|
OPPONENT_OBS = "opponent_obs"
|
|
OPPONENT_ACTION = "opponent_action"
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=100,
|
|
help="Number of iterations to train.")
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train.")
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=7.99,
|
|
help="Reward at which we stop training.")
|
|
|
|
|
|
class CentralizedValueMixin:
|
|
"""Add method to evaluate the central value function from the model."""
|
|
|
|
def __init__(self):
|
|
if self.config["framework"] != "torch":
|
|
self.compute_central_vf = make_tf_callable(self.get_session())(
|
|
self.model.central_value_function)
|
|
else:
|
|
self.compute_central_vf = self.model.central_value_function
|
|
|
|
|
|
# Grabs the opponent obs/act and includes it in the experience train_batch,
|
|
# and computes GAE using the central vf predictions.
|
|
def centralized_critic_postprocessing(policy,
|
|
sample_batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
pytorch = policy.config["framework"] == "torch"
|
|
if (pytorch and hasattr(policy, "compute_central_vf")) or \
|
|
(not pytorch and policy.loss_initialized()):
|
|
assert other_agent_batches is not None
|
|
[(_, opponent_batch)] = list(other_agent_batches.values())
|
|
|
|
# also record the opponent obs and actions in the trajectory
|
|
sample_batch[OPPONENT_OBS] = opponent_batch[SampleBatch.CUR_OBS]
|
|
sample_batch[OPPONENT_ACTION] = opponent_batch[SampleBatch.ACTIONS]
|
|
|
|
# overwrite default VF prediction with the central VF
|
|
if args.framework == "torch":
|
|
sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf(
|
|
convert_to_torch_tensor(
|
|
sample_batch[SampleBatch.CUR_OBS], policy.device),
|
|
convert_to_torch_tensor(
|
|
sample_batch[OPPONENT_OBS], policy.device),
|
|
convert_to_torch_tensor(
|
|
sample_batch[OPPONENT_ACTION], policy.device)) \
|
|
.cpu().detach().numpy()
|
|
else:
|
|
sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf(
|
|
sample_batch[SampleBatch.CUR_OBS], sample_batch[OPPONENT_OBS],
|
|
sample_batch[OPPONENT_ACTION])
|
|
else:
|
|
# Policy hasn't been initialized yet, use zeros.
|
|
sample_batch[OPPONENT_OBS] = np.zeros_like(
|
|
sample_batch[SampleBatch.CUR_OBS])
|
|
sample_batch[OPPONENT_ACTION] = np.zeros_like(
|
|
sample_batch[SampleBatch.ACTIONS])
|
|
sample_batch[SampleBatch.VF_PREDS] = np.zeros_like(
|
|
sample_batch[SampleBatch.REWARDS], dtype=np.float32)
|
|
|
|
completed = sample_batch["dones"][-1]
|
|
if completed:
|
|
last_r = 0.0
|
|
else:
|
|
last_r = sample_batch[SampleBatch.VF_PREDS][-1]
|
|
|
|
train_batch = compute_advantages(
|
|
sample_batch,
|
|
last_r,
|
|
policy.config["gamma"],
|
|
policy.config["lambda"],
|
|
use_gae=policy.config["use_gae"])
|
|
return train_batch
|
|
|
|
|
|
# Copied from PPO but optimizing the central value function.
|
|
def loss_with_central_critic(policy, model, dist_class, train_batch):
|
|
CentralizedValueMixin.__init__(policy)
|
|
func = tf_loss if not policy.config["framework"] == "torch" else torch_loss
|
|
|
|
vf_saved = model.value_function
|
|
model.value_function = lambda: policy.model.central_value_function(
|
|
train_batch[SampleBatch.CUR_OBS], train_batch[OPPONENT_OBS],
|
|
train_batch[OPPONENT_ACTION])
|
|
|
|
policy._central_value_out = model.value_function()
|
|
loss = func(policy, model, dist_class, train_batch)
|
|
|
|
model.value_function = vf_saved
|
|
|
|
return loss
|
|
|
|
|
|
def setup_tf_mixins(policy, obs_space, action_space, config):
|
|
# Copied from PPOTFPolicy (w/o ValueNetworkMixin).
|
|
KLCoeffMixin.__init__(policy, config)
|
|
EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
|
|
config["entropy_coeff_schedule"])
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
|
|
|
|
def setup_torch_mixins(policy, obs_space, action_space, config):
|
|
# Copied from PPOTorchPolicy (w/o ValueNetworkMixin).
|
|
TorchKLCoeffMixin.__init__(policy, config)
|
|
TorchEntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
|
|
config["entropy_coeff_schedule"])
|
|
TorchLR.__init__(policy, config["lr"], config["lr_schedule"])
|
|
|
|
|
|
def central_vf_stats(policy, train_batch, grads):
|
|
# Report the explained variance of the central value function.
|
|
return {
|
|
"vf_explained_var": explained_variance(
|
|
train_batch[Postprocessing.VALUE_TARGETS],
|
|
policy._central_value_out)
|
|
}
|
|
|
|
|
|
CCPPOTFPolicy = PPOTFPolicy.with_updates(
|
|
name="CCPPOTFPolicy",
|
|
postprocess_fn=centralized_critic_postprocessing,
|
|
loss_fn=loss_with_central_critic,
|
|
before_loss_init=setup_tf_mixins,
|
|
grad_stats_fn=central_vf_stats,
|
|
mixins=[
|
|
LearningRateSchedule, EntropyCoeffSchedule, KLCoeffMixin,
|
|
CentralizedValueMixin
|
|
])
|
|
|
|
CCPPOTorchPolicy = PPOTorchPolicy.with_updates(
|
|
name="CCPPOTorchPolicy",
|
|
postprocess_fn=centralized_critic_postprocessing,
|
|
loss_fn=loss_with_central_critic,
|
|
before_init=setup_torch_mixins,
|
|
mixins=[
|
|
TorchLR, TorchEntropyCoeffSchedule, TorchKLCoeffMixin,
|
|
CentralizedValueMixin
|
|
])
|
|
|
|
|
|
def get_policy_class(config):
|
|
if config["framework"] == "torch":
|
|
return CCPPOTorchPolicy
|
|
|
|
|
|
CCTrainer = PPOTrainer.with_updates(
|
|
name="CCPPOTrainer",
|
|
default_policy=CCPPOTFPolicy,
|
|
get_policy_class=get_policy_class,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"cc_model", TorchCentralizedCriticModel
|
|
if args.framework == "torch" else CentralizedCriticModel)
|
|
|
|
config = {
|
|
"env": TwoStepGame,
|
|
"batch_mode": "complete_episodes",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_workers": 0,
|
|
"multiagent": {
|
|
"policies": {
|
|
"pol1": (None, Discrete(6), TwoStepGame.action_space, {
|
|
"framework": args.framework,
|
|
}),
|
|
"pol2": (None, Discrete(6), TwoStepGame.action_space, {
|
|
"framework": args.framework,
|
|
}),
|
|
},
|
|
"policy_mapping_fn": (
|
|
lambda aid, **kwargs: "pol1" if aid == 0 else "pol2"),
|
|
},
|
|
"model": {
|
|
"custom_model": "cc_model",
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(CCTrainer, config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|