ray/rllib/algorithms/appo/tests/test_appo.py

178 lines
5.9 KiB
Python

import unittest
import ray
import ray.rllib.algorithms.appo as appo
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY
from ray.rllib.utils.test_utils import (
check_compute_single_action,
check_train_results,
framework_iterator,
)
class TestAPPO(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_appo_compilation(self):
"""Test whether APPO can be built with both frameworks."""
config = appo.APPOConfig().rollouts(num_rollout_workers=1)
num_iterations = 2
for _ in framework_iterator(config, with_eager_tracing=True):
print("w/o v-trace")
config.vtrace = False
algo = config.build(env="CartPole-v0")
for i in range(num_iterations):
results = algo.train()
check_train_results(results)
print(results)
check_compute_single_action(algo)
algo.stop()
print("w/ v-trace")
config.vtrace = True
algo = config.build(env="CartPole-v0")
for i in range(num_iterations):
results = algo.train()
check_train_results(results)
print(results)
check_compute_single_action(algo)
algo.stop()
def test_appo_compilation_use_kl_loss(self):
"""Test whether APPO can be built with kl_loss enabled."""
config = (
appo.APPOConfig().rollouts(num_rollout_workers=1).training(use_kl_loss=True)
)
num_iterations = 2
for _ in framework_iterator(config, with_eager_tracing=True):
algo = config.build(env="CartPole-v0")
for i in range(num_iterations):
results = algo.train()
check_train_results(results)
print(results)
check_compute_single_action(algo)
algo.stop()
def test_appo_two_tf_optimizers(self):
# Not explicitly setting this should cause a warning, but not fail.
# config["_tf_policy_handles_more_than_one_loss"] = True
config = (
appo.APPOConfig()
.rollouts(num_rollout_workers=1)
.training(_separate_vf_optimizer=True, _lr_vf=0.002)
)
# Make sure we have two completely separate models for policy and
# value function.
config.model["vf_share_layers"] = False
num_iterations = 2
# Only supported for tf so far.
for _ in framework_iterator(config, frameworks=("tf2", "tf")):
algo = config.build(env="CartPole-v0")
for i in range(num_iterations):
results = algo.train()
check_train_results(results)
print(results)
check_compute_single_action(algo)
algo.stop()
def test_appo_entropy_coeff_schedule(self):
# Initial lr, doesn't really matter because of the schedule below.
config = (
appo.APPOConfig()
.rollouts(
num_rollout_workers=1,
batch_mode="truncate_episodes",
rollout_fragment_length=10,
)
.resources(num_gpus=0)
.training(
train_batch_size=20,
entropy_coeff=0.01,
entropy_coeff_schedule=[
[0, 0.1],
[100, 0.01],
[300, 0.001],
[500, 0.0001],
],
)
.reporting(min_train_timesteps_per_iteration=20)
)
config.min_sample_timesteps_per_iteration = 20
# 0 metrics reporting delay, this makes sure timestep,
# which entropy coeff depends on, is updated after each worker rollout.
config.min_time_s_per_iteration = 0
def _step_n_times(algo, n: int):
"""Step Algorithm n times.
Returns:
learning rate at the end of the execution.
"""
for _ in range(n):
results = algo.train()
print(algo.workers.local_worker().global_vars)
print(results)
return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][LEARNER_STATS_KEY][
"entropy_coeff"
]
for _ in framework_iterator(config):
algo = config.build(env="CartPole-v0")
coeff = _step_n_times(algo, 10) # 200 timesteps
# Should be close to the starting coeff of 0.01.
self.assertLessEqual(coeff, 0.01)
self.assertGreaterEqual(coeff, 0.001)
coeff = _step_n_times(algo, 20) # 400 timesteps
# Should have annealed to the final coeff of 0.0001.
self.assertLessEqual(coeff, 0.001)
algo.stop()
def test_appo_model_variables(self):
config = (
appo.APPOConfig()
.rollouts(
num_rollout_workers=1,
batch_mode="truncate_episodes",
rollout_fragment_length=10,
)
.resources(num_gpus=0)
.training(
train_batch_size=20,
)
.training(
model={
"fcnet_hiddens": [16],
}
)
)
for _ in framework_iterator(config, frameworks=["tf2", "torch"]):
algo = config.build(env="CartPole-v0")
state = algo.get_policy(DEFAULT_POLICY_ID).get_state()
# Weights and Biases for the single hidden layer, the output layer
# of the policy and value networks. So 6 tensors in total.
# We should not get the tensors from the target model here.
self.assertEqual(len(state["weights"]), 6)
if __name__ == "__main__":
import sys
import pytest
sys.exit(pytest.main(["-v", __file__]))