ray/doc/source/tune/tutorials/tune-search-spaces.rst
2022-03-25 09:04:53 +01:00

172 lines
5.7 KiB
ReStructuredText

.. _tune-search-space-tutorial:
Working with Tune Search Spaces
===============================
Tune has a native interface for specifying search spaces.
You can specify the search space via ``tune.run(config=...)``.
Thereby, you can either use the ``tune.grid_search`` primitive to use grid search:
.. code-block:: python
tune.run(
trainable,
config={"bar": tune.grid_search([True, False])})
Or you can use one of the random sampling primitives to specify distributions (:ref:`tune-sample-docs`):
.. code-block:: python
tune.run(
trainable,
config={
"param1": tune.choice([True, False]),
"bar": tune.uniform(0, 10),
"alpha": tune.sample_from(lambda _: np.random.uniform(100) ** 2),
"const": "hello" # It is also ok to specify constant values.
})
.. caution:: If you use a SearchAlgorithm, you may not be able to specify lambdas or grid search with this
interface, as some search algorithms may not be compatible.
To sample multiple times/run multiple trials, specify ``tune.run(num_samples=N``.
If ``grid_search`` is provided as an argument, the *same* grid will be repeated ``N`` times.
.. code-block:: python
# 13 different configs.
tune.run(trainable, num_samples=13, config={
"x": tune.choice([0, 1, 2]),
}
)
# 13 different configs.
tune.run(trainable, num_samples=13, config={
"x": tune.choice([0, 1, 2]),
"y": tune.randn([0, 1, 2]),
}
)
# 4 different configs.
tune.run(trainable, config={"x": tune.grid_search([1, 2, 3, 4])}, num_samples=1)
# 3 different configs.
tune.run(trainable, config={"x": grid_search([1, 2, 3])}, num_samples=1)
# 6 different configs.
tune.run(trainable, config={"x": tune.grid_search([1, 2, 3])}, num_samples=2)
# 9 different configs.
tune.run(trainable, num_samples=1, config={
"x": tune.grid_search([1, 2, 3]),
"y": tune.grid_search([a, b, c])}
)
# 18 different configs.
tune.run(trainable, num_samples=2, config={
"x": tune.grid_search([1, 2, 3]),
"y": tune.grid_search([a, b, c])}
)
# 45 different configs.
tune.run(trainable, num_samples=5, config={
"x": tune.grid_search([1, 2, 3]),
"y": tune.grid_search([a, b, c])}
)
Note that grid search and random search primitives are inter-operable.
Each can be used independently or in combination with each other.
.. code-block:: python
# 6 different configs.
tune.run(trainable, num_samples=2, config={
"x": tune.sample_from(...),
"y": tune.grid_search([a, b, c])
}
)
In the below example, ``num_samples=10`` repeats the 3x3 grid search 10 times,
for a total of 90 trials, each with randomly sampled values of ``alpha`` and ``beta``.
.. code-block:: python
:emphasize-lines: 12
tune.run(
my_trainable,
name="my_trainable",
# num_samples will repeat the entire config 10 times.
num_samples=10
config={
# ``sample_from`` creates a generator to call the lambda once per trial.
"alpha": tune.sample_from(lambda spec: np.random.uniform(100)),
# ``sample_from`` also supports "conditional search spaces"
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal()),
"nn_layers": [
# tune.grid_search will make it so that all values are evaluated.
tune.grid_search([16, 64, 256]),
tune.grid_search([16, 64, 256]),
],
},
)
.. _tune_custom-search:
How to use Custom and Conditional Search Spaces?
------------------------------------------------
You'll often run into awkward search spaces (i.e., when one hyperparameter depends on another).
Use ``tune.sample_from(func)`` to provide a **custom** callable function for generating a search space.
The parameter ``func`` should take in a ``spec`` object, which has a ``config`` namespace
from which you can access other hyperparameters.
This is useful for conditional distributions:
.. code-block:: python
tune.run(
...,
config={
# A random function
"alpha": tune.sample_from(lambda _: np.random.uniform(100)),
# Use the `spec.config` namespace to access other hyperparameters
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal())
}
)
Here's an example showing a grid search over two nested parameters combined with random sampling from
two lambda functions, generating 9 different trials.
Note that the value of ``beta`` depends on the value of ``alpha``,
which is represented by referencing ``spec.config.alpha`` in the lambda function.
This lets you specify conditional parameter distributions.
.. code-block:: python
:emphasize-lines: 4-11
tune.run(
my_trainable,
name="my_trainable",
config={
"alpha": tune.sample_from(lambda spec: np.random.uniform(100)),
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal()),
"nn_layers": [
tune.grid_search([16, 64, 256]),
tune.grid_search([16, 64, 256]),
],
}
)
.. note::
This format is not supported by every SearchAlgorithm, and only some SearchAlgorithms, like :ref:`HyperOpt <tune-hyperopt>`
and :ref:`Optuna <tune-optuna>`, handle conditional search spaces at all.
In order to use conditional search spaces with :ref:`HyperOpt <tune-hyperopt>`,
a `Hyperopt search space <http://hyperopt.github.io/hyperopt/getting-started/search_spaces/>`_ isnecessary.
:ref:`Optuna <tune-optuna>` supports conditional search spaces through its define-by-run
interface (:doc:`/tune/examples/optuna_example`).