mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.algorithms.alpha_zero as az
|
|
from ray.rllib.algorithms.alpha_zero.models.custom_torch_models import DenseModel
|
|
from ray.rllib.examples.env.cartpole_sparse_rewards import CartPoleSparseRewards
|
|
from ray.rllib.utils.test_utils import (
|
|
check_train_results,
|
|
framework_iterator,
|
|
)
|
|
|
|
|
|
class TestAlphaZero(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_alpha_zero_compilation(self):
|
|
"""Test whether AlphaZero can be built with all frameworks."""
|
|
config = (
|
|
az.AlphaZeroConfig()
|
|
.environment(env=CartPoleSparseRewards)
|
|
.training(model={"custom_model": DenseModel})
|
|
)
|
|
num_iterations = 1
|
|
|
|
# Only working for torch right now.
|
|
for _ in framework_iterator(config, frameworks="torch"):
|
|
algo = config.build()
|
|
for i in range(num_iterations):
|
|
results = algo.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
algo.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|