mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Remove all __future__ imports from RLlib. * Remove (object) again from tf_run_builder.py::TFRunBuilder. * Fix 2xLINT warnings. * Fix broken appo_policy import (must be appo_tf_policy) * Remove future imports from all other ray files (not just RLlib). * Remove future imports from all other ray files (not just RLlib). * Remove future import blocks that contain `unicode_literals` as well. Revert appo_tf_policy.py to appo_policy.py (belongs to another PR). * Add two empty lines before Schedule class. * Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
203 lines
8.7 KiB
Python
203 lines
8.7 KiB
Python
from ray.rllib.policy.dynamic_tf_policy import DynamicTFPolicy
|
|
from ray.rllib.policy import eager_tf_policy
|
|
from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY
|
|
from ray.rllib.policy.tf_policy import TFPolicy
|
|
from ray.rllib.utils import add_mixins
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
|
from ray.rllib.utils import try_import_tf
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
@DeveloperAPI
|
|
def build_tf_policy(name,
|
|
loss_fn,
|
|
get_default_config=None,
|
|
postprocess_fn=None,
|
|
stats_fn=None,
|
|
optimizer_fn=None,
|
|
gradients_fn=None,
|
|
apply_gradients_fn=None,
|
|
grad_stats_fn=None,
|
|
extra_action_fetches_fn=None,
|
|
extra_learn_fetches_fn=None,
|
|
before_init=None,
|
|
before_loss_init=None,
|
|
after_init=None,
|
|
make_model=None,
|
|
action_sampler_fn=None,
|
|
mixins=None,
|
|
get_batch_divisibility_req=None,
|
|
obs_include_prev_action_reward=True):
|
|
"""Helper function for creating a dynamic tf policy at runtime.
|
|
|
|
Functions will be run in this order to initialize the policy:
|
|
1. Placeholder setup: postprocess_fn
|
|
2. Loss init: loss_fn, stats_fn
|
|
3. Optimizer init: optimizer_fn, gradients_fn, apply_gradients_fn,
|
|
grad_stats_fn
|
|
|
|
This means that you can e.g., depend on any policy attributes created in
|
|
the running of `loss_fn` in later functions such as `stats_fn`.
|
|
|
|
In eager mode, the following functions will be run repeatedly on each
|
|
eager execution: loss_fn, stats_fn, gradients_fn, apply_gradients_fn,
|
|
and grad_stats_fn.
|
|
|
|
This means that these functions should not define any variables internally,
|
|
otherwise they will fail in eager mode execution. Variable should only
|
|
be created in make_model (if defined).
|
|
|
|
Arguments:
|
|
name (str): name of the policy (e.g., "PPOTFPolicy")
|
|
loss_fn (func): function that returns a loss tensor as arguments
|
|
(policy, model, dist_class, train_batch)
|
|
get_default_config (func): optional function that returns the default
|
|
config to merge with any overrides
|
|
postprocess_fn (func): optional experience postprocessing function
|
|
that takes the same args as Policy.postprocess_trajectory()
|
|
stats_fn (func): optional function that returns a dict of
|
|
TF fetches given the policy and batch input tensors
|
|
optimizer_fn (func): optional function that returns a tf.Optimizer
|
|
given the policy and config
|
|
gradients_fn (func): optional function that returns a list of gradients
|
|
given (policy, optimizer, loss). If not specified, this
|
|
defaults to optimizer.compute_gradients(loss)
|
|
apply_gradients_fn (func): optional function that returns an apply
|
|
gradients op given (policy, optimizer, grads_and_vars)
|
|
grad_stats_fn (func): optional function that returns a dict of
|
|
TF fetches given the policy, batch input, and gradient tensors
|
|
extra_action_fetches_fn (func): optional function that returns
|
|
a dict of TF fetches given the policy object
|
|
extra_learn_fetches_fn (func): optional function that returns a dict of
|
|
extra values to fetch and return when learning on a batch
|
|
before_init (func): optional function to run at the beginning of
|
|
policy init that takes the same arguments as the policy constructor
|
|
before_loss_init (func): optional function to run prior to loss
|
|
init that takes the same arguments as the policy constructor
|
|
after_init (func): optional function to run at the end of policy init
|
|
that takes the same arguments as the policy constructor
|
|
make_model (func): optional function that returns a ModelV2 object
|
|
given (policy, obs_space, action_space, config).
|
|
All policy variables should be created in this function. If not
|
|
specified, a default model will be created.
|
|
action_sampler_fn (func): optional function that returns a
|
|
tuple of action and action prob tensors given
|
|
(policy, model, input_dict, obs_space, action_space, config).
|
|
If not specified, a default action distribution will be used.
|
|
mixins (list): list of any class mixins for the returned policy class.
|
|
These mixins will be applied in order and will have higher
|
|
precedence than the DynamicTFPolicy class
|
|
get_batch_divisibility_req (func): optional function that returns
|
|
the divisibility requirement for sample batches
|
|
obs_include_prev_action_reward (bool): whether to include the
|
|
previous action and reward in the model input
|
|
|
|
Returns:
|
|
a DynamicTFPolicy instance that uses the specified args
|
|
"""
|
|
|
|
original_kwargs = locals().copy()
|
|
base = add_mixins(DynamicTFPolicy, mixins)
|
|
|
|
class policy_cls(base):
|
|
def __init__(self,
|
|
obs_space,
|
|
action_space,
|
|
config,
|
|
existing_model=None,
|
|
existing_inputs=None):
|
|
if get_default_config:
|
|
config = dict(get_default_config(), **config)
|
|
|
|
if before_init:
|
|
before_init(self, obs_space, action_space, config)
|
|
|
|
def before_loss_init_wrapper(policy, obs_space, action_space,
|
|
config):
|
|
if before_loss_init:
|
|
before_loss_init(policy, obs_space, action_space, config)
|
|
if extra_action_fetches_fn is None:
|
|
self._extra_action_fetches = {}
|
|
else:
|
|
self._extra_action_fetches = extra_action_fetches_fn(self)
|
|
|
|
DynamicTFPolicy.__init__(
|
|
self,
|
|
obs_space,
|
|
action_space,
|
|
config,
|
|
loss_fn,
|
|
stats_fn=stats_fn,
|
|
grad_stats_fn=grad_stats_fn,
|
|
before_loss_init=before_loss_init_wrapper,
|
|
make_model=make_model,
|
|
action_sampler_fn=action_sampler_fn,
|
|
existing_model=existing_model,
|
|
existing_inputs=existing_inputs,
|
|
get_batch_divisibility_req=get_batch_divisibility_req,
|
|
obs_include_prev_action_reward=obs_include_prev_action_reward)
|
|
|
|
if after_init:
|
|
after_init(self, obs_space, action_space, config)
|
|
|
|
@override(Policy)
|
|
def postprocess_trajectory(self,
|
|
sample_batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
if not postprocess_fn:
|
|
return sample_batch
|
|
return postprocess_fn(self, sample_batch, other_agent_batches,
|
|
episode)
|
|
|
|
@override(TFPolicy)
|
|
def optimizer(self):
|
|
if optimizer_fn:
|
|
return optimizer_fn(self, self.config)
|
|
else:
|
|
return base.optimizer(self)
|
|
|
|
@override(TFPolicy)
|
|
def gradients(self, optimizer, loss):
|
|
if gradients_fn:
|
|
return gradients_fn(self, optimizer, loss)
|
|
else:
|
|
return base.gradients(self, optimizer, loss)
|
|
|
|
@override(TFPolicy)
|
|
def build_apply_op(self, optimizer, grads_and_vars):
|
|
if apply_gradients_fn:
|
|
return apply_gradients_fn(self, optimizer, grads_and_vars)
|
|
else:
|
|
return base.build_apply_op(self, optimizer, grads_and_vars)
|
|
|
|
@override(TFPolicy)
|
|
def extra_compute_action_fetches(self):
|
|
return dict(
|
|
base.extra_compute_action_fetches(self),
|
|
**self._extra_action_fetches)
|
|
|
|
@override(TFPolicy)
|
|
def extra_compute_grad_fetches(self):
|
|
if extra_learn_fetches_fn:
|
|
# auto-add empty learner stats dict if needed
|
|
return dict({
|
|
LEARNER_STATS_KEY: {}
|
|
}, **extra_learn_fetches_fn(self))
|
|
else:
|
|
return base.extra_compute_grad_fetches(self)
|
|
|
|
@staticmethod
|
|
def with_updates(**overrides):
|
|
return build_tf_policy(**dict(original_kwargs, **overrides))
|
|
|
|
@staticmethod
|
|
def as_eager():
|
|
return eager_tf_policy.build_eager_tf_policy(**original_kwargs)
|
|
|
|
policy_cls.with_updates = with_updates
|
|
policy_cls.as_eager = as_eager
|
|
policy_cls.__name__ = name
|
|
policy_cls.__qualname__ = name
|
|
return policy_cls
|