ray/rllib/evaluation/rollout_worker.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

854 lines
35 KiB
Python

import random
import numpy as np
import gym
import logging
import pickle
import ray
from ray.rllib.env.atari_wrappers import wrap_deepmind, is_atari
from ray.rllib.env.base_env import BaseEnv
from ray.rllib.env.env_context import EnvContext
from ray.rllib.env.external_env import ExternalEnv
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.rllib.env.external_multi_agent_env import ExternalMultiAgentEnv
from ray.rllib.env.vector_env import VectorEnv
from ray.rllib.evaluation.interface import EvaluatorInterface
from ray.rllib.evaluation.sampler import AsyncSampler, SyncSampler
from ray.rllib.policy.sample_batch import MultiAgentBatch, DEFAULT_POLICY_ID
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.offline import NoopOutput, IOContext, OutputWriter, InputReader
from ray.rllib.offline.is_estimator import ImportanceSamplingEstimator
from ray.rllib.offline.wis_estimator import WeightedImportanceSamplingEstimator
from ray.rllib.models import ModelCatalog
from ray.rllib.models.preprocessors import NoPreprocessor
from ray.rllib.utils import merge_dicts
from ray.rllib.utils.annotations import override, DeveloperAPI
from ray.rllib.utils.debug import disable_log_once_globally, log_once, \
summarize, enable_periodic_logging
from ray.rllib.utils.filter import get_filter
from ray.rllib.utils.tf_run_builder import TFRunBuilder
from ray.rllib.utils import try_import_tf, try_import_torch
tf = try_import_tf()
torch, _ = try_import_torch()
logger = logging.getLogger(__name__)
# Handle to the current rollout worker, which will be set to the most recently
# created RolloutWorker in this process. This can be helpful to access in
# custom env or policy classes for debugging or advanced use cases.
_global_worker = None
@DeveloperAPI
def get_global_worker():
"""Returns a handle to the active rollout worker in this process."""
global _global_worker
return _global_worker
@DeveloperAPI
class RolloutWorker(EvaluatorInterface):
"""Common experience collection class.
This class wraps a policy instance and an environment class to
collect experiences from the environment. You can create many replicas of
this class as Ray actors to scale RL training.
This class supports vectorized and multi-agent policy evaluation (e.g.,
VectorEnv, MultiAgentEnv, etc.)
Examples:
>>> # Create a rollout worker and using it to collect experiences.
>>> worker = RolloutWorker(
... env_creator=lambda _: gym.make("CartPole-v0"),
... policy=PGTFPolicy)
>>> print(worker.sample())
SampleBatch({
"obs": [[...]], "actions": [[...]], "rewards": [[...]],
"dones": [[...]], "new_obs": [[...]]})
>>> # Creating a multi-agent rollout worker
>>> worker = RolloutWorker(
... env_creator=lambda _: MultiAgentTrafficGrid(num_cars=25),
... policies={
... # Use an ensemble of two policies for car agents
... "car_policy1":
... (PGTFPolicy, Box(...), Discrete(...), {"gamma": 0.99}),
... "car_policy2":
... (PGTFPolicy, Box(...), Discrete(...), {"gamma": 0.95}),
... # Use a single shared policy for all traffic lights
... "traffic_light_policy":
... (PGTFPolicy, Box(...), Discrete(...), {}),
... },
... policy_mapping_fn=lambda agent_id:
... random.choice(["car_policy1", "car_policy2"])
... if agent_id.startswith("car_") else "traffic_light_policy")
>>> print(worker.sample())
MultiAgentBatch({
"car_policy1": SampleBatch(...),
"car_policy2": SampleBatch(...),
"traffic_light_policy": SampleBatch(...)})
"""
@DeveloperAPI
@classmethod
def as_remote(cls,
num_cpus=None,
num_gpus=None,
memory=None,
object_store_memory=None,
resources=None):
return ray.remote(
num_cpus=num_cpus,
num_gpus=num_gpus,
memory=memory,
object_store_memory=object_store_memory,
resources=resources)(cls)
@DeveloperAPI
def __init__(self,
env_creator,
policy,
policy_mapping_fn=None,
policies_to_train=None,
tf_session_creator=None,
batch_steps=100,
batch_mode="truncate_episodes",
episode_horizon=None,
preprocessor_pref="deepmind",
sample_async=False,
compress_observations=False,
num_envs=1,
observation_filter="NoFilter",
clip_rewards=None,
clip_actions=True,
env_config=None,
model_config=None,
policy_config=None,
worker_index=0,
monitor_path=None,
log_dir=None,
log_level=None,
callbacks=None,
input_creator=lambda ioctx: ioctx.default_sampler_input(),
input_evaluation=frozenset([]),
output_creator=lambda ioctx: NoopOutput(),
remote_worker_envs=False,
remote_env_batch_wait_ms=0,
soft_horizon=False,
no_done_at_end=False,
seed=None,
_fake_sampler=False):
"""Initialize a rollout worker.
Arguments:
env_creator (func): Function that returns a gym.Env given an
EnvContext wrapped configuration.
policy (class|dict): Either a class implementing
Policy, or a dictionary of policy id strings to
(Policy, obs_space, action_space, config) tuples. If a
dict is specified, then we are in multi-agent mode and a
policy_mapping_fn should also be set.
policy_mapping_fn (func): A function that maps agent ids to
policy ids in multi-agent mode. This function will be called
each time a new agent appears in an episode, to bind that agent
to a policy for the duration of the episode.
policies_to_train (list): Optional whitelist of policies to train,
or None for all policies.
tf_session_creator (func): A function that returns a TF session.
This is optional and only useful with TFPolicy.
batch_steps (int): The target number of env transitions to include
in each sample batch returned from this worker.
batch_mode (str): One of the following batch modes:
"truncate_episodes": Each call to sample() will return a batch
of at most `batch_steps * num_envs` in size. The batch will
be exactly `batch_steps * num_envs` in size if
postprocessing does not change batch sizes. Episodes may be
truncated in order to meet this size requirement.
"complete_episodes": Each call to sample() will return a batch
of at least `batch_steps * num_envs` in size. Episodes will
not be truncated, but multiple episodes may be packed
within one batch to meet the batch size. Note that when
`num_envs > 1`, episode steps will be buffered until the
episode completes, and hence batches may contain
significant amounts of off-policy data.
episode_horizon (int): Whether to stop episodes at this horizon.
preprocessor_pref (str): Whether to prefer RLlib preprocessors
("rllib") or deepmind ("deepmind") when applicable.
sample_async (bool): Whether to compute samples asynchronously in
the background, which improves throughput but can cause samples
to be slightly off-policy.
compress_observations (bool): If true, compress the observations.
They can be decompressed with rllib/utils/compression.
num_envs (int): If more than one, will create multiple envs
and vectorize the computation of actions. This has no effect if
if the env already implements VectorEnv.
observation_filter (str): Name of observation filter to use.
clip_rewards (bool): Whether to clip rewards to [-1, 1] prior to
experience postprocessing. Setting to None means clip for Atari
only.
clip_actions (bool): Whether to clip action values to the range
specified by the policy action space.
env_config (dict): Config to pass to the env creator.
model_config (dict): Config to use when creating the policy model.
policy_config (dict): Config to pass to the policy. In the
multi-agent case, this config will be merged with the
per-policy configs specified by `policy`.
worker_index (int): For remote workers, this should be set to a
non-zero and unique value. This index is passed to created envs
through EnvContext so that envs can be configured per worker.
monitor_path (str): Write out episode stats and videos to this
directory if specified.
log_dir (str): Directory where logs can be placed.
log_level (str): Set the root log level on creation.
callbacks (dict): Dict of custom debug callbacks.
input_creator (func): Function that returns an InputReader object
for loading previous generated experiences.
input_evaluation (list): How to evaluate the policy performance.
This only makes sense to set when the input is reading offline
data. The possible values include:
- "is": the step-wise importance sampling estimator.
- "wis": the weighted step-wise is estimator.
- "simulation": run the environment in the background, but
use this data for evaluation only and never for learning.
output_creator (func): Function that returns an OutputWriter object
for saving generated experiences.
remote_worker_envs (bool): If using num_envs > 1, whether to create
those new envs in remote processes instead of in the current
process. This adds overheads, but can make sense if your envs
remote_env_batch_wait_ms (float): Timeout that remote workers
are waiting when polling environments. 0 (continue when at
least one env is ready) is a reasonable default, but optimal
value could be obtained by measuring your environment
step / reset and model inference perf.
soft_horizon (bool): Calculate rewards but don't reset the
environment when the horizon is hit.
no_done_at_end (bool): Ignore the done=True at the end of the
episode and instead record done=False.
seed (int): Set the seed of both np and tf to this value to
to ensure each remote worker has unique exploration behavior.
_fake_sampler (bool): Use a fake (inf speed) sampler for testing.
"""
global _global_worker
_global_worker = self
policy_config = policy_config or {}
if (tf and policy_config.get("eager")
and not policy_config.get("no_eager_on_workers")):
tf.enable_eager_execution()
if log_level:
logging.getLogger("ray.rllib").setLevel(log_level)
if worker_index > 1:
disable_log_once_globally() # only need 1 worker to log
elif log_level == "DEBUG":
enable_periodic_logging()
env_context = EnvContext(env_config or {}, worker_index)
self.policy_config = policy_config
self.callbacks = callbacks or {}
self.worker_index = worker_index
model_config = model_config or {}
policy_mapping_fn = (policy_mapping_fn
or (lambda agent_id: DEFAULT_POLICY_ID))
if not callable(policy_mapping_fn):
raise ValueError("Policy mapping function not callable?")
self.env_creator = env_creator
self.sample_batch_size = batch_steps * num_envs
self.batch_mode = batch_mode
self.compress_observations = compress_observations
self.preprocessing_enabled = True
self.last_batch = None
self._fake_sampler = _fake_sampler
self.env = _validate_env(env_creator(env_context))
if isinstance(self.env, MultiAgentEnv) or \
isinstance(self.env, BaseEnv):
def wrap(env):
return env # we can't auto-wrap these env types
elif is_atari(self.env) and \
not model_config.get("custom_preprocessor") and \
preprocessor_pref == "deepmind":
# Deepmind wrappers already handle all preprocessing
self.preprocessing_enabled = False
if clip_rewards is None:
clip_rewards = True
def wrap(env):
env = wrap_deepmind(
env,
dim=model_config.get("dim"),
framestack=model_config.get("framestack"))
if monitor_path:
from gym import wrappers
env = wrappers.Monitor(env, monitor_path, resume=True)
return env
else:
def wrap(env):
if monitor_path:
from gym import wrappers
env = wrappers.Monitor(env, monitor_path, resume=True)
return env
self.env = wrap(self.env)
def make_env(vector_index):
return wrap(
env_creator(
env_context.copy_with_overrides(
vector_index=vector_index, remote=remote_worker_envs)))
self.tf_sess = None
policy_dict = _validate_and_canonicalize(policy, self.env)
self.policies_to_train = policies_to_train or list(policy_dict.keys())
# set numpy and python seed
if seed is not None:
np.random.seed(seed)
random.seed(seed)
if not hasattr(self.env, "seed"):
raise ValueError("Env doesn't support env.seed(): {}".format(
self.env))
self.env.seed(seed)
try:
assert torch is not None
torch.manual_seed(seed)
except AssertionError:
logger.info("Could not seed torch")
if _has_tensorflow_graph(policy_dict) and not (tf and
tf.executing_eagerly()):
if not tf:
raise ImportError("Could not import tensorflow")
with tf.Graph().as_default():
if tf_session_creator:
self.tf_sess = tf_session_creator()
else:
self.tf_sess = tf.Session(
config=tf.ConfigProto(
gpu_options=tf.GPUOptions(allow_growth=True)))
with self.tf_sess.as_default():
# set graph-level seed
if seed is not None:
tf.set_random_seed(seed)
self.policy_map, self.preprocessors = \
self._build_policy_map(policy_dict, policy_config)
if (ray.is_initialized()
and ray.worker._mode() != ray.worker.LOCAL_MODE):
if not ray.get_gpu_ids():
logger.debug(
"Creating policy evaluation worker {}".format(
worker_index) +
" on CPU (please ignore any CUDA init errors)")
elif not tf.test.is_gpu_available():
raise RuntimeError(
"GPUs were assigned to this worker by Ray, but "
"TensorFlow reports GPU acceleration is disabled. "
"This could be due to a bad CUDA or TF installation.")
else:
self.policy_map, self.preprocessors = self._build_policy_map(
policy_dict, policy_config)
self.multiagent = set(self.policy_map.keys()) != {DEFAULT_POLICY_ID}
if self.multiagent:
if not ((isinstance(self.env, MultiAgentEnv)
or isinstance(self.env, ExternalMultiAgentEnv))
or isinstance(self.env, BaseEnv)):
raise ValueError(
"Have multiple policies {}, but the env ".format(
self.policy_map) +
"{} is not a subclass of BaseEnv, MultiAgentEnv or "
"ExternalMultiAgentEnv?".format(self.env))
self.filters = {
policy_id: get_filter(observation_filter,
policy.observation_space.shape)
for (policy_id, policy) in self.policy_map.items()
}
if self.worker_index == 0:
logger.info("Built filter map: {}".format(self.filters))
# Always use vector env for consistency even if num_envs = 1
self.async_env = BaseEnv.to_base_env(
self.env,
make_env=make_env,
num_envs=num_envs,
remote_envs=remote_worker_envs,
remote_env_batch_wait_ms=remote_env_batch_wait_ms)
self.num_envs = num_envs
if self.batch_mode == "truncate_episodes":
unroll_length = batch_steps
pack_episodes = True
elif self.batch_mode == "complete_episodes":
unroll_length = float("inf") # never cut episodes
pack_episodes = False # sampler will return 1 episode per poll
else:
raise ValueError("Unsupported batch mode: {}".format(
self.batch_mode))
self.io_context = IOContext(log_dir, policy_config, worker_index, self)
self.reward_estimators = []
for method in input_evaluation:
if method == "simulation":
logger.warning(
"Requested 'simulation' input evaluation method: "
"will discard all sampler outputs and keep only metrics.")
sample_async = True
elif method == "is":
ise = ImportanceSamplingEstimator.create(self.io_context)
self.reward_estimators.append(ise)
elif method == "wis":
wise = WeightedImportanceSamplingEstimator.create(
self.io_context)
self.reward_estimators.append(wise)
else:
raise ValueError(
"Unknown evaluation method: {}".format(method))
if sample_async:
self.sampler = AsyncSampler(
self.async_env,
self.policy_map,
policy_mapping_fn,
self.preprocessors,
self.filters,
clip_rewards,
unroll_length,
self.callbacks,
horizon=episode_horizon,
pack=pack_episodes,
tf_sess=self.tf_sess,
clip_actions=clip_actions,
blackhole_outputs="simulation" in input_evaluation,
soft_horizon=soft_horizon,
no_done_at_end=no_done_at_end)
self.sampler.start()
else:
self.sampler = SyncSampler(
self.async_env,
self.policy_map,
policy_mapping_fn,
self.preprocessors,
self.filters,
clip_rewards,
unroll_length,
self.callbacks,
horizon=episode_horizon,
pack=pack_episodes,
tf_sess=self.tf_sess,
clip_actions=clip_actions,
soft_horizon=soft_horizon,
no_done_at_end=no_done_at_end)
self.input_reader = input_creator(self.io_context)
assert isinstance(self.input_reader, InputReader), self.input_reader
self.output_writer = output_creator(self.io_context)
assert isinstance(self.output_writer, OutputWriter), self.output_writer
logger.debug(
"Created rollout worker with env {} ({}), policies {}".format(
self.async_env, self.env, self.policy_map))
@override(EvaluatorInterface)
def sample(self):
"""Evaluate the current policies and return a batch of experiences.
Return:
SampleBatch|MultiAgentBatch from evaluating the current policies.
"""
if self._fake_sampler and self.last_batch is not None:
return self.last_batch
if log_once("sample_start"):
logger.info("Generating sample batch of size {}".format(
self.sample_batch_size))
batches = [self.input_reader.next()]
steps_so_far = batches[0].count
# In truncate_episodes mode, never pull more than 1 batch per env.
# This avoids over-running the target batch size.
if self.batch_mode == "truncate_episodes":
max_batches = self.num_envs
else:
max_batches = float("inf")
while steps_so_far < self.sample_batch_size and len(
batches) < max_batches:
batch = self.input_reader.next()
steps_so_far += batch.count
batches.append(batch)
batch = batches[0].concat_samples(batches)
if self.callbacks.get("on_sample_end"):
self.callbacks["on_sample_end"]({"worker": self, "samples": batch})
# Always do writes prior to compression for consistency and to allow
# for better compression inside the writer.
self.output_writer.write(batch)
# Do off-policy estimation if needed
if self.reward_estimators:
for sub_batch in batch.split_by_episode():
for estimator in self.reward_estimators:
estimator.process(sub_batch)
if log_once("sample_end"):
logger.info("Completed sample batch:\n\n{}\n".format(
summarize(batch)))
if self.compress_observations == "bulk":
batch.compress(bulk=True)
elif self.compress_observations:
batch.compress()
if self._fake_sampler:
self.last_batch = batch
return batch
@DeveloperAPI
@ray.method(num_return_vals=2)
def sample_with_count(self):
"""Same as sample() but returns the count as a separate future."""
batch = self.sample()
return batch, batch.count
@override(EvaluatorInterface)
def get_weights(self, policies=None):
if policies is None:
policies = self.policy_map.keys()
return {
pid: policy.get_weights()
for pid, policy in self.policy_map.items() if pid in policies
}
@override(EvaluatorInterface)
def set_weights(self, weights):
for pid, w in weights.items():
self.policy_map[pid].set_weights(w)
@override(EvaluatorInterface)
def compute_gradients(self, samples):
if log_once("compute_gradients"):
logger.info("Compute gradients on:\n\n{}\n".format(
summarize(samples)))
if isinstance(samples, MultiAgentBatch):
grad_out, info_out = {}, {}
if self.tf_sess is not None:
builder = TFRunBuilder(self.tf_sess, "compute_gradients")
for pid, batch in samples.policy_batches.items():
if pid not in self.policies_to_train:
continue
grad_out[pid], info_out[pid] = (
self.policy_map[pid]._build_compute_gradients(
builder, batch))
grad_out = {k: builder.get(v) for k, v in grad_out.items()}
info_out = {k: builder.get(v) for k, v in info_out.items()}
else:
for pid, batch in samples.policy_batches.items():
if pid not in self.policies_to_train:
continue
grad_out[pid], info_out[pid] = (
self.policy_map[pid].compute_gradients(batch))
else:
grad_out, info_out = (
self.policy_map[DEFAULT_POLICY_ID].compute_gradients(samples))
info_out["batch_count"] = samples.count
if log_once("grad_out"):
logger.info("Compute grad info:\n\n{}\n".format(
summarize(info_out)))
return grad_out, info_out
@override(EvaluatorInterface)
def apply_gradients(self, grads):
if log_once("apply_gradients"):
logger.info("Apply gradients:\n\n{}\n".format(summarize(grads)))
if isinstance(grads, dict):
if self.tf_sess is not None:
builder = TFRunBuilder(self.tf_sess, "apply_gradients")
outputs = {
pid: self.policy_map[pid]._build_apply_gradients(
builder, grad)
for pid, grad in grads.items()
}
return {k: builder.get(v) for k, v in outputs.items()}
else:
return {
pid: self.policy_map[pid].apply_gradients(g)
for pid, g in grads.items()
}
else:
return self.policy_map[DEFAULT_POLICY_ID].apply_gradients(grads)
@override(EvaluatorInterface)
def learn_on_batch(self, samples):
if log_once("learn_on_batch"):
logger.info(
"Training on concatenated sample batches:\n\n{}\n".format(
summarize(samples)))
if isinstance(samples, MultiAgentBatch):
info_out = {}
to_fetch = {}
if self.tf_sess is not None:
builder = TFRunBuilder(self.tf_sess, "learn_on_batch")
else:
builder = None
for pid, batch in samples.policy_batches.items():
if pid not in self.policies_to_train:
continue
policy = self.policy_map[pid]
if builder and hasattr(policy, "_build_learn_on_batch"):
to_fetch[pid] = policy._build_learn_on_batch(
builder, batch)
else:
info_out[pid] = policy.learn_on_batch(batch)
info_out.update({k: builder.get(v) for k, v in to_fetch.items()})
else:
info_out = self.policy_map[DEFAULT_POLICY_ID].learn_on_batch(
samples)
if log_once("learn_out"):
logger.debug("Training out:\n\n{}\n".format(summarize(info_out)))
return info_out
@DeveloperAPI
def get_metrics(self):
"""Returns a list of new RolloutMetric objects from evaluation."""
out = self.sampler.get_metrics()
for m in self.reward_estimators:
out.extend(m.get_metrics())
return out
@DeveloperAPI
def foreach_env(self, func):
"""Apply the given function to each underlying env instance."""
envs = self.async_env.get_unwrapped()
if not envs:
return [func(self.async_env)]
else:
return [func(e) for e in envs]
@DeveloperAPI
def get_policy(self, policy_id=DEFAULT_POLICY_ID):
"""Return policy for the specified id, or None.
Arguments:
policy_id (str): id of policy to return.
"""
return self.policy_map.get(policy_id)
@DeveloperAPI
def for_policy(self, func, policy_id=DEFAULT_POLICY_ID):
"""Apply the given function to the specified policy."""
return func(self.policy_map[policy_id])
@DeveloperAPI
def foreach_policy(self, func):
"""Apply the given function to each (policy, policy_id) tuple."""
return [func(policy, pid) for pid, policy in self.policy_map.items()]
@DeveloperAPI
def foreach_trainable_policy(self, func):
"""
Applies the given function to each (policy, policy_id) tuple, which
can be found in `self.policies_to_train`.
Args:
func (callable): A function - taking a Policy and its ID - that is
called on all Policies within `self.policies_to_train`.
Returns:
List[any]: The list of n return values of all
`func([policy], [ID])`-calls.
"""
return [
func(policy, pid) for pid, policy in self.policy_map.items()
if pid in self.policies_to_train
]
@DeveloperAPI
def sync_filters(self, new_filters):
"""Changes self's filter to given and rebases any accumulated delta.
Args:
new_filters (dict): Filters with new state to update local copy.
"""
assert all(k in new_filters for k in self.filters)
for k in self.filters:
self.filters[k].sync(new_filters[k])
@DeveloperAPI
def get_filters(self, flush_after=False):
"""Returns a snapshot of filters.
Args:
flush_after (bool): Clears the filter buffer state.
Returns:
return_filters (dict): Dict for serializable filters
"""
return_filters = {}
for k, f in self.filters.items():
return_filters[k] = f.as_serializable()
if flush_after:
f.clear_buffer()
return return_filters
@DeveloperAPI
def save(self):
filters = self.get_filters(flush_after=True)
state = {
pid: self.policy_map[pid].get_state()
for pid in self.policy_map
}
return pickle.dumps({"filters": filters, "state": state})
@DeveloperAPI
def restore(self, objs):
objs = pickle.loads(objs)
self.sync_filters(objs["filters"])
for pid, state in objs["state"].items():
self.policy_map[pid].set_state(state)
@DeveloperAPI
def set_global_vars(self, global_vars):
self.foreach_policy(lambda p, _: p.on_global_var_update(global_vars))
@DeveloperAPI
def export_policy_model(self, export_dir, policy_id=DEFAULT_POLICY_ID):
self.policy_map[policy_id].export_model(export_dir)
@DeveloperAPI
def export_policy_checkpoint(self,
export_dir,
filename_prefix="model",
policy_id=DEFAULT_POLICY_ID):
self.policy_map[policy_id].export_checkpoint(export_dir,
filename_prefix)
@DeveloperAPI
def stop(self):
self.async_env.stop()
def _build_policy_map(self, policy_dict, policy_config):
policy_map = {}
preprocessors = {}
for name, (cls, obs_space, act_space,
conf) in sorted(policy_dict.items()):
logger.debug("Creating policy for {}".format(name))
merged_conf = merge_dicts(policy_config, conf)
if self.preprocessing_enabled:
preprocessor = ModelCatalog.get_preprocessor_for_space(
obs_space, merged_conf.get("model"))
preprocessors[name] = preprocessor
obs_space = preprocessor.observation_space
else:
preprocessors[name] = NoPreprocessor(obs_space)
if isinstance(obs_space, gym.spaces.Dict) or \
isinstance(obs_space, gym.spaces.Tuple):
raise ValueError(
"Found raw Tuple|Dict space as input to policy. "
"Please preprocess these observations with a "
"Tuple|DictFlatteningPreprocessor.")
if tf and tf.executing_eagerly():
if hasattr(cls, "as_eager"):
cls = cls.as_eager()
if policy_config["eager_tracing"]:
cls = cls.with_tracing()
elif not issubclass(cls, TFPolicy):
pass # could be some other type of policy
else:
raise ValueError("This policy does not support eager "
"execution: {}".format(cls))
if tf:
with tf.variable_scope(name):
policy_map[name] = cls(obs_space, act_space, merged_conf)
else:
policy_map[name] = cls(obs_space, act_space, merged_conf)
if self.worker_index == 0:
logger.info("Built policy map: {}".format(policy_map))
logger.info("Built preprocessor map: {}".format(preprocessors))
return policy_map, preprocessors
def __del__(self):
if hasattr(self, "sampler") and isinstance(self.sampler, AsyncSampler):
self.sampler.shutdown = True
def _validate_and_canonicalize(policy, env):
if isinstance(policy, dict):
_validate_multiagent_config(policy)
return policy
elif not issubclass(policy, Policy):
raise ValueError("policy must be a rllib.Policy class")
else:
if (isinstance(env, MultiAgentEnv)
and not hasattr(env, "observation_space")):
raise ValueError(
"MultiAgentEnv must have observation_space defined if run "
"in a single-agent configuration.")
return {
DEFAULT_POLICY_ID: (policy, env.observation_space,
env.action_space, {})
}
def _validate_multiagent_config(policy, allow_none_graph=False):
for k, v in policy.items():
if not isinstance(k, str):
raise ValueError("policy keys must be strs, got {}".format(
type(k)))
if not isinstance(v, (tuple, list)) or len(v) != 4:
raise ValueError(
"policy values must be tuples/lists of "
"(cls or None, obs_space, action_space, config), got {}".
format(v))
if allow_none_graph and v[0] is None:
pass
elif not issubclass(v[0], Policy):
raise ValueError("policy tuple value 0 must be a rllib.Policy "
"class or None, got {}".format(v[0]))
if not isinstance(v[1], gym.Space):
raise ValueError(
"policy tuple value 1 (observation_space) must be a "
"gym.Space, got {}".format(type(v[1])))
if not isinstance(v[2], gym.Space):
raise ValueError("policy tuple value 2 (action_space) must be a "
"gym.Space, got {}".format(type(v[2])))
if not isinstance(v[3], dict):
raise ValueError("policy tuple value 3 (config) must be a dict, "
"got {}".format(type(v[3])))
def _validate_env(env):
# allow this as a special case (assumed gym.Env)
if hasattr(env, "observation_space") and hasattr(env, "action_space"):
return env
allowed_types = [gym.Env, MultiAgentEnv, ExternalEnv, VectorEnv, BaseEnv]
if not any(isinstance(env, tpe) for tpe in allowed_types):
raise ValueError(
"Returned env should be an instance of gym.Env, MultiAgentEnv, "
"ExternalEnv, VectorEnv, or BaseEnv. The provided env creator "
"function returned {} ({}).".format(env, type(env)))
return env
def _has_tensorflow_graph(policy_dict):
for policy, _, _, _ in policy_dict.values():
if issubclass(policy, TFPolicy):
return True
return False