ray/rllib/agents/qmix/model.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

39 lines
1.4 KiB
Python

from ray.rllib.models.preprocessors import get_preprocessor
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils import try_import_torch
torch, nn = try_import_torch()
F = nn.functional
class RNNModel(TorchModelV2, nn.Module):
"""The default RNN model for QMIX."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
self.obs_size = _get_size(obs_space)
self.rnn_hidden_dim = model_config["lstm_cell_size"]
self.fc1 = nn.Linear(self.obs_size, self.rnn_hidden_dim)
self.rnn = nn.GRUCell(self.rnn_hidden_dim, self.rnn_hidden_dim)
self.fc2 = nn.Linear(self.rnn_hidden_dim, num_outputs)
@override(TorchModelV2)
def get_initial_state(self):
# make hidden states on same device as model
return [self.fc1.weight.new(1, self.rnn_hidden_dim).zero_().squeeze(0)]
@override(TorchModelV2)
def forward(self, input_dict, hidden_state, seq_lens):
x = F.relu(self.fc1(input_dict["obs_flat"].float()))
h_in = hidden_state[0].reshape(-1, self.rnn_hidden_dim)
h = self.rnn(x, h_in)
q = self.fc2(h)
return q, [h]
def _get_size(obs_space):
return get_preprocessor(obs_space)(obs_space).size