ray/rllib/examples/models/simple_rpg_model.py

68 lines
2.7 KiB
Python

from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork as TFFCNet
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFCNet
from ray.rllib.utils.framework import try_import_tf, try_import_torch
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
class CustomTorchRPGModel(TorchModelV2, nn.Module):
"""Example of interpreting repeated observations."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, num_outputs, model_config,
name)
nn.Module.__init__(self)
self.model = TorchFCNet(obs_space, action_space, num_outputs,
model_config, name)
def forward(self, input_dict, state, seq_lens):
# The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS:
# {
# 'items', <torch.Tensor shape=(?, M, N, 5)>,
# 'location', <torch.Tensor shape=(?, M, 2)>,
# 'status', <torch.Tensor shape=(?, M, 10)>,
# }
print("The unpacked input tensors:", input_dict["obs"])
print()
print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim())
print()
print("Fully unbatched", input_dict["obs"].unbatch_all())
print()
return self.model.forward(input_dict, state, seq_lens)
def value_function(self):
return self.model.value_function()
class CustomTFRPGModel(TFModelV2):
"""Example of interpreting repeated observations."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, num_outputs, model_config,
name)
self.model = TFFCNet(obs_space, action_space, num_outputs,
model_config, name)
def forward(self, input_dict, state, seq_lens):
# The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS:
# {
# 'items', <tf.Tensor shape=(?, M, N, 5)>,
# 'location', <tf.Tensor shape=(?, M, 2)>,
# 'status', <tf.Tensor shape=(?, M, 10)>,
# }
print("The unpacked input tensors:", input_dict["obs"])
print()
print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim())
print()
if tf.executing_eagerly():
print("Fully unbatched", input_dict["obs"].unbatch_all())
print()
return self.model.forward(input_dict, state, seq_lens)
def value_function(self):
return self.model.value_function()