ray/rllib/examples/batch_norm_model.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

89 lines
2.3 KiB
Python

"""Example of using a custom model with batch norm."""
import argparse
import os
import ray
from ray import air, tune
from ray.rllib.examples.models.batch_norm_model import (
BatchNormModel,
KerasBatchNormModel,
TorchBatchNormModel,
)
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=200, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
ModelCatalog.register_custom_model(
"bn_model",
TorchBatchNormModel
if args.framework == "torch"
else KerasBatchNormModel
if args.run != "PPO"
else BatchNormModel,
)
config = {
"env": "Pendulum-v1" if args.run in ["DDPG", "SAC"] else "CartPole-v0",
"model": {
"custom_model": "bn_model",
},
"lr": 0.0003,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_workers": 0,
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
tuner = tune.Tuner(
args.run,
param_space=config,
run_config=air.RunConfig(
verbose=2,
stop=stop,
),
)
results = tuner.fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()