mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
295 lines
9.9 KiB
Python
295 lines
9.9 KiB
Python
from gym.spaces import Box, Dict, Discrete, Tuple, MultiDiscrete
|
|
import numpy as np
|
|
import unittest
|
|
import traceback
|
|
|
|
import ray
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.agents.registry import get_agent_class
|
|
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole, \
|
|
MultiAgentMountainCar
|
|
from ray.rllib.examples.env.random_env import RandomEnv
|
|
from ray.rllib.models.tf.fcnet_v2 import FullyConnectedNetwork as FCNetV2
|
|
from ray.rllib.models.tf.visionnet_v2 import VisionNetwork as VisionNetV2
|
|
from ray.rllib.models.torch.visionnet import VisionNetwork as TorchVisionNetV2
|
|
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFCNetV2
|
|
from ray.rllib.utils.error import UnsupportedSpaceException
|
|
from ray.tune.registry import register_env
|
|
|
|
tf = try_import_tf()
|
|
|
|
ACTION_SPACES_TO_TEST = {
|
|
"discrete": Discrete(5),
|
|
"vector": Box(-1.0, 1.0, (5, ), dtype=np.float32),
|
|
"vector2": Box(-1.0, 1.0, (
|
|
5,
|
|
5,
|
|
), dtype=np.float32),
|
|
"multidiscrete": MultiDiscrete([1, 2, 3, 4]),
|
|
"tuple": Tuple(
|
|
[Discrete(2),
|
|
Discrete(3),
|
|
Box(-1.0, 1.0, (5, ), dtype=np.float32)]),
|
|
"dict": Dict({
|
|
"action_choice": Discrete(3),
|
|
"parameters": Box(-1.0, 1.0, (1, ), dtype=np.float32),
|
|
"yet_another_nested_dict": Dict({
|
|
"a": Tuple([Discrete(2), Discrete(3)])
|
|
})
|
|
}),
|
|
}
|
|
|
|
OBSERVATION_SPACES_TO_TEST = {
|
|
"discrete": Discrete(5),
|
|
"vector": Box(-1.0, 1.0, (5, ), dtype=np.float32),
|
|
"vector2": Box(-1.0, 1.0, (5, 5), dtype=np.float32),
|
|
"image": Box(-1.0, 1.0, (84, 84, 1), dtype=np.float32),
|
|
"atari": Box(-1.0, 1.0, (210, 160, 3), dtype=np.float32),
|
|
"tuple": Tuple([Discrete(10),
|
|
Box(-1.0, 1.0, (5, ), dtype=np.float32)]),
|
|
"dict": Dict({
|
|
"task": Discrete(10),
|
|
"position": Box(-1.0, 1.0, (5, ), dtype=np.float32),
|
|
}),
|
|
}
|
|
|
|
|
|
def check_support(alg, config, stats, check_bounds=False, name=None):
|
|
covered_a = set()
|
|
covered_o = set()
|
|
config["log_level"] = "ERROR"
|
|
first_error = None
|
|
torch = config.get("use_pytorch", False)
|
|
for a_name, action_space in ACTION_SPACES_TO_TEST.items():
|
|
for o_name, obs_space in OBSERVATION_SPACES_TO_TEST.items():
|
|
print("=== Testing {} (torch={}) A={} S={} ===".format(
|
|
alg, torch, action_space, obs_space))
|
|
config.update(
|
|
dict(
|
|
env_config=dict(
|
|
action_space=action_space,
|
|
observation_space=obs_space,
|
|
reward_space=Box(1.0, 1.0, shape=(), dtype=np.float32),
|
|
p_done=1.0,
|
|
check_action_bounds=check_bounds)))
|
|
stat = "ok"
|
|
a = None
|
|
try:
|
|
if a_name in covered_a and o_name in covered_o:
|
|
stat = "skip" # speed up tests by avoiding full grid
|
|
else:
|
|
a = get_agent_class(alg)(config=config, env=RandomEnv)
|
|
if alg not in ["DDPG", "ES", "ARS", "SAC"]:
|
|
if o_name in ["atari", "image"]:
|
|
if torch:
|
|
assert isinstance(a.get_policy().model,
|
|
TorchVisionNetV2)
|
|
else:
|
|
assert isinstance(a.get_policy().model,
|
|
VisionNetV2)
|
|
elif o_name in ["vector", "vector2"]:
|
|
if torch:
|
|
assert isinstance(a.get_policy().model,
|
|
TorchFCNetV2)
|
|
else:
|
|
assert isinstance(a.get_policy().model,
|
|
FCNetV2)
|
|
a.train()
|
|
covered_a.add(a_name)
|
|
covered_o.add(o_name)
|
|
except UnsupportedSpaceException:
|
|
stat = "unsupported"
|
|
except Exception as e:
|
|
stat = "ERROR"
|
|
print(e)
|
|
print(traceback.format_exc())
|
|
first_error = first_error if first_error is not None else e
|
|
finally:
|
|
if a:
|
|
try:
|
|
a.stop()
|
|
except Exception as e:
|
|
print("Ignoring error stopping agent", e)
|
|
pass
|
|
print(stat)
|
|
print()
|
|
stats[name or alg, a_name, o_name] = stat
|
|
|
|
# If anything happened, raise error.
|
|
if first_error is not None:
|
|
raise first_error
|
|
|
|
|
|
def check_support_multiagent(alg, config):
|
|
register_env("multi_agent_mountaincar",
|
|
lambda _: MultiAgentMountainCar({"num_agents": 2}))
|
|
register_env("multi_agent_cartpole",
|
|
lambda _: MultiAgentCartPole({"num_agents": 2}))
|
|
config["log_level"] = "ERROR"
|
|
if "DDPG" in alg:
|
|
a = get_agent_class(alg)(config=config, env="multi_agent_mountaincar")
|
|
else:
|
|
a = get_agent_class(alg)(config=config, env="multi_agent_cartpole")
|
|
try:
|
|
a.train()
|
|
finally:
|
|
a.stop()
|
|
|
|
|
|
class ModelSupportedSpaces(unittest.TestCase):
|
|
stats = {}
|
|
|
|
def setUp(self):
|
|
ray.init(num_cpus=4, ignore_reinit_error=True)
|
|
|
|
def tearDown(self):
|
|
ray.shutdown()
|
|
|
|
def test_a3c(self):
|
|
config = {"num_workers": 1, "optimizer": {"grads_per_step": 1}}
|
|
check_support("A3C", config, self.stats, check_bounds=True)
|
|
config["use_pytorch"] = True
|
|
check_support("A3C", config, self.stats, check_bounds=True)
|
|
|
|
def test_appo(self):
|
|
check_support("APPO", {"num_gpus": 0, "vtrace": False}, self.stats)
|
|
check_support(
|
|
"APPO", {
|
|
"num_gpus": 0,
|
|
"vtrace": True
|
|
},
|
|
self.stats,
|
|
name="APPO-vt")
|
|
|
|
def test_ars(self):
|
|
check_support(
|
|
"ARS", {
|
|
"num_workers": 1,
|
|
"noise_size": 10000000,
|
|
"num_rollouts": 1,
|
|
"rollouts_used": 1
|
|
}, self.stats)
|
|
|
|
def test_ddpg(self):
|
|
check_support(
|
|
"DDPG", {
|
|
"exploration_config": {
|
|
"ou_base_scale": 100.0
|
|
},
|
|
"timesteps_per_iteration": 1,
|
|
"use_state_preprocessor": True,
|
|
},
|
|
self.stats,
|
|
check_bounds=True)
|
|
|
|
def test_dqn(self):
|
|
config = {"timesteps_per_iteration": 1}
|
|
check_support("DQN", config, self.stats)
|
|
config["use_pytorch"] = True
|
|
check_support("DQN", config, self.stats)
|
|
|
|
def test_es(self):
|
|
check_support(
|
|
"ES", {
|
|
"num_workers": 1,
|
|
"noise_size": 10000000,
|
|
"episodes_per_batch": 1,
|
|
"train_batch_size": 1
|
|
}, self.stats)
|
|
|
|
def test_impala(self):
|
|
check_support("IMPALA", {"num_gpus": 0}, self.stats)
|
|
|
|
def test_ppo(self):
|
|
config = {
|
|
"num_workers": 1,
|
|
"num_sgd_iter": 1,
|
|
"train_batch_size": 10,
|
|
"rollout_fragment_length": 10,
|
|
"sgd_minibatch_size": 1,
|
|
}
|
|
check_support("PPO", config, self.stats, check_bounds=True)
|
|
config["use_pytorch"] = True
|
|
check_support("PPO", config, self.stats, check_bounds=True)
|
|
|
|
def test_pg(self):
|
|
config = {"num_workers": 1, "optimizer": {}}
|
|
check_support("PG", config, self.stats, check_bounds=True)
|
|
config["use_pytorch"] = True
|
|
check_support("PG", config, self.stats, check_bounds=True)
|
|
|
|
def test_sac(self):
|
|
check_support("SAC", {}, self.stats, check_bounds=True)
|
|
|
|
def test_a3c_multiagent(self):
|
|
check_support_multiagent("A3C", {
|
|
"num_workers": 1,
|
|
"optimizer": {
|
|
"grads_per_step": 1
|
|
}
|
|
})
|
|
|
|
def test_apex_multiagent(self):
|
|
check_support_multiagent(
|
|
"APEX", {
|
|
"num_workers": 2,
|
|
"timesteps_per_iteration": 1000,
|
|
"num_gpus": 0,
|
|
"min_iter_time_s": 1,
|
|
"learning_starts": 1000,
|
|
"target_network_update_freq": 100,
|
|
})
|
|
|
|
def test_apex_ddpg_multiagent(self):
|
|
check_support_multiagent(
|
|
"APEX_DDPG", {
|
|
"num_workers": 2,
|
|
"timesteps_per_iteration": 1000,
|
|
"num_gpus": 0,
|
|
"min_iter_time_s": 1,
|
|
"learning_starts": 1000,
|
|
"target_network_update_freq": 100,
|
|
"use_state_preprocessor": True,
|
|
})
|
|
|
|
def test_ddpg_multiagent(self):
|
|
check_support_multiagent("DDPG", {
|
|
"timesteps_per_iteration": 1,
|
|
"use_state_preprocessor": True,
|
|
"learning_starts": 500,
|
|
})
|
|
|
|
def test_dqn_multiagent(self):
|
|
check_support_multiagent("DQN", {"timesteps_per_iteration": 1})
|
|
|
|
def test_impala_multiagent(self):
|
|
check_support_multiagent("IMPALA", {"num_gpus": 0})
|
|
|
|
def test_pg_multiagent(self):
|
|
check_support_multiagent("PG", {"num_workers": 1, "optimizer": {}})
|
|
|
|
def test_ppo_multiagent(self):
|
|
check_support_multiagent(
|
|
"PPO", {
|
|
"num_workers": 1,
|
|
"num_sgd_iter": 1,
|
|
"train_batch_size": 10,
|
|
"rollout_fragment_length": 10,
|
|
"sgd_minibatch_size": 1,
|
|
})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
if len(sys.argv) > 1 and sys.argv[1] == "--smoke":
|
|
ACTION_SPACES_TO_TEST = {
|
|
"discrete": Discrete(5),
|
|
}
|
|
OBSERVATION_SPACES_TO_TEST = {
|
|
"vector": Box(0.0, 1.0, (5, ), dtype=np.float32),
|
|
"atari": Box(0.0, 1.0, (210, 160, 3), dtype=np.float32),
|
|
}
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|