ray/release/nightly_tests/stress_tests/test_dead_actors.py
Jiajun Yao a668e5d8db
Add perf metrics for stress tests (#23648)
Added perf metrics for stress tests so they can be alerted on.
2022-04-05 08:09:27 +09:00

123 lines
4 KiB
Python

#!/usr/bin/env python
import argparse
import json
import logging
import numpy as np
import os
import sys
import time
import ray
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ray.init(address="auto")
@ray.remote
class Child(object):
def __init__(self, death_probability):
self.death_probability = death_probability
def ping(self):
# Exit process with some probability.
exit_chance = np.random.rand()
if exit_chance > self.death_probability:
sys.exit(-1)
@ray.remote
class Parent(object):
def __init__(self, num_children, death_probability):
self.death_probability = death_probability
self.children = [Child.remote(death_probability) for _ in range(num_children)]
def ping(self, num_pings):
children_outputs = []
for _ in range(num_pings):
children_outputs += [child.ping.remote() for child in self.children]
try:
ray.get(children_outputs)
except Exception:
# Replace the children if one of them died.
self.__init__(len(self.children), self.death_probability)
def kill(self):
# Clean up children.
ray.get([child.__ray_terminate__.remote() for child in self.children])
def parse_script_args():
parser = argparse.ArgumentParser()
parser.add_argument("--num-nodes", type=int, default=100)
parser.add_argument("--num-parents", type=int, default=10)
parser.add_argument("--num-children", type=int, default=10)
parser.add_argument("--death-probability", type=int, default=0.95)
return parser.parse_known_args()
if __name__ == "__main__":
args, unknown = parse_script_args()
result = {"success": 0}
# These numbers need to correspond with the autoscaler config file.
# The number of remote nodes in the autoscaler should upper bound
# these because sometimes nodes fail to update.
num_remote_nodes = args.num_nodes
num_parents = args.num_parents
num_children = args.num_children
death_probability = args.death_probability
# Wait until the expected number of nodes have joined the cluster.
while True:
num_nodes = len(ray.nodes())
logger.info("Waiting for nodes {}/{}".format(num_nodes, num_remote_nodes + 1))
if num_nodes >= num_remote_nodes + 1:
break
time.sleep(5)
logger.info(
"Nodes have all joined. There are %s resources.", ray.cluster_resources()
)
parents = [
Parent.remote(num_children, death_probability) for _ in range(num_parents)
]
start = time.time()
loop_times = []
for i in range(100):
loop_start = time.time()
ray.get([parent.ping.remote(10) for parent in parents])
# Kill a parent actor with some probability.
exit_chance = np.random.rand()
if exit_chance > death_probability:
parent_index = np.random.randint(len(parents))
parents[parent_index].kill.remote()
parents[parent_index] = Parent.remote(num_children, death_probability)
logger.info("Finished trial %s", i)
loop_times.append(time.time() - loop_start)
print("Finished in: {}s".format(time.time() - start))
print("Average iteration time: {}s".format(sum(loop_times) / len(loop_times)))
print("Max iteration time: {}s".format(max(loop_times)))
print("Min iteration time: {}s".format(min(loop_times)))
result["total_time"] = time.time() - start
result["avg_iteration_time"] = sum(loop_times) / len(loop_times)
result["max_iteration_time"] = max(loop_times)
result["min_iteration_time"] = min(loop_times)
result["success"] = 1
if os.environ.get("IS_SMOKE_TEST") != "1":
result["perf_metrics"] = [
{
"perf_metric_name": "avg_iteration_time",
"perf_metric_value": result["avg_iteration_time"],
"perf_metric_type": "LATENCY",
}
]
print("PASSED.")
with open(os.environ["TEST_OUTPUT_JSON"], "w") as f:
f.write(json.dumps(result))