ray/rllib/utils/exploration/stochastic_sampling.py
Sven Mika e153e3179f
[RLlib] Exploration API: Policy changes needed for forward pass noisifications. (#7798)
* Rollback.

* WIP.

* WIP.

* LINT.

* WIP.

* Fix.

* Fix.

* Fix.

* LINT.

* Fix (SAC does currently not support eager).

* Fix.

* WIP.

* LINT.

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* WIP.

* Fix.

* LINT.

* LINT.

* Fix and LINT.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Fix.

* Fix and LINT.

* Update rllib/utils/exploration/exploration.py

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Fixes.

* LINT.

* WIP.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-04-01 00:43:21 -07:00

81 lines
3.2 KiB
Python

from typing import Union
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
TensorType
from ray.rllib.utils.tuple_actions import TupleActions
tf = try_import_tf()
torch, _ = try_import_torch()
class StochasticSampling(Exploration):
"""An exploration that simply samples from a distribution.
The sampling can be made deterministic by passing explore=False into
the call to `get_exploration_action`.
Also allows for scheduled parameters for the distributions, such as
lowering stddev, temperature, etc.. over time.
"""
def __init__(self, action_space, *, framework: str, model: ModelV2,
**kwargs):
"""Initializes a StochasticSampling Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
framework (str): One of None, "tf", "torch".
"""
assert framework is not None
super().__init__(
action_space, model=model, framework=framework, **kwargs)
@override(Exploration)
def get_exploration_action(self,
*,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True):
if self.framework == "torch":
return self._get_torch_exploration_action(action_distribution,
explore)
else:
return self._get_tf_exploration_action_op(action_distribution,
explore)
def _get_tf_exploration_action_op(self, action_dist, explore):
sample = action_dist.sample()
deterministic_sample = action_dist.deterministic_sample()
action = tf.cond(
tf.constant(explore) if isinstance(explore, bool) else explore,
true_fn=lambda: sample,
false_fn=lambda: deterministic_sample)
def logp_false_fn():
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
if isinstance(sample, TupleActions):
batch_size = tf.shape(action[0])[0]
else:
batch_size = tf.shape(action)[0]
return tf.zeros(shape=(batch_size, ), dtype=tf.float32)
logp = tf.cond(
tf.constant(explore) if isinstance(explore, bool) else explore,
true_fn=lambda: action_dist.sampled_action_logp(),
false_fn=logp_false_fn)
return TupleActions(action) if isinstance(sample, TupleActions) \
else action, logp
@staticmethod
def _get_torch_exploration_action(action_dist, explore):
if explore:
action = action_dist.sample()
logp = action_dist.sampled_action_logp()
else:
action = action_dist.deterministic_sample()
logp = torch.zeros((action.size()[0], ), dtype=torch.float32)
return action, logp