ray/doc/source/tune/examples/pbt_ppo_example.ipynb
Max Pumperla 372c620f58
[docs] Tune overhaul part II (#22656)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2022-02-26 23:07:34 -08:00

130 lines
No EOL
4.2 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"id": "3b05af3b",
"metadata": {},
"source": [
"(tune-rllib-example)=\n",
"\n",
"# Using RLlib with Tune\n",
"\n",
"```{image} /rllib/images/rllib-logo.png\n",
":align: center\n",
":alt: RLlib Logo\n",
":height: 120px\n",
":target: https://docs.ray.io\n",
"```\n",
"\n",
"```{contents}\n",
":backlinks: none\n",
":local: true\n",
"```\n",
"\n",
"## Example\n",
"\n",
"Example of using PBT with RLlib.\n",
"\n",
"Note that this requires a cluster with at least 8 GPUs in order for all trials\n",
"to run concurrently, otherwise PBT will round-robin train the trials which\n",
"is less efficient (or you can set {\"gpu\": 0} to use CPUs for SGD instead).\n",
"\n",
"Note that Tune in general does not need 8 GPUs, and this is just a more\n",
"computationally demanding example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "19e3c389",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"\n",
"from ray import tune\n",
"from ray.tune.schedulers import PopulationBasedTraining\n",
"\n",
"if __name__ == \"__main__\":\n",
"\n",
" # Postprocess the perturbed config to ensure it's still valid\n",
" def explore(config):\n",
" # ensure we collect enough timesteps to do sgd\n",
" if config[\"train_batch_size\"] < config[\"sgd_minibatch_size\"] * 2:\n",
" config[\"train_batch_size\"] = config[\"sgd_minibatch_size\"] * 2\n",
" # ensure we run at least one sgd iter\n",
" if config[\"num_sgd_iter\"] < 1:\n",
" config[\"num_sgd_iter\"] = 1\n",
" return config\n",
"\n",
" pbt = PopulationBasedTraining(\n",
" time_attr=\"time_total_s\",\n",
" perturbation_interval=120,\n",
" resample_probability=0.25,\n",
" # Specifies the mutations of these hyperparams\n",
" hyperparam_mutations={\n",
" \"lambda\": lambda: random.uniform(0.9, 1.0),\n",
" \"clip_param\": lambda: random.uniform(0.01, 0.5),\n",
" \"lr\": [1e-3, 5e-4, 1e-4, 5e-5, 1e-5],\n",
" \"num_sgd_iter\": lambda: random.randint(1, 30),\n",
" \"sgd_minibatch_size\": lambda: random.randint(128, 16384),\n",
" \"train_batch_size\": lambda: random.randint(2000, 160000),\n",
" },\n",
" custom_explore_fn=explore,\n",
" )\n",
"\n",
" analysis = tune.run(\n",
" \"PPO\",\n",
" name=\"pbt_humanoid_test\",\n",
" scheduler=pbt,\n",
" num_samples=1,\n",
" metric=\"episode_reward_mean\",\n",
" mode=\"max\",\n",
" config={\n",
" \"env\": \"Humanoid-v1\",\n",
" \"kl_coeff\": 1.0,\n",
" \"num_workers\": 8,\n",
" \"num_gpus\": 0, # number of GPUs to use\n",
" \"model\": {\"free_log_std\": True},\n",
" # These params are tuned from a fixed starting value.\n",
" \"lambda\": 0.95,\n",
" \"clip_param\": 0.2,\n",
" \"lr\": 1e-4,\n",
" # These params start off randomly drawn from a set.\n",
" \"num_sgd_iter\": tune.choice([10, 20, 30]),\n",
" \"sgd_minibatch_size\": tune.choice([128, 512, 2048]),\n",
" \"train_batch_size\": tune.choice([10000, 20000, 40000]),\n",
" },\n",
" )\n",
"\n",
" print(\"best hyperparameters: \", analysis.best_config)\n"
]
},
{
"cell_type": "markdown",
"id": "6fb69a24",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## More RLlib Examples\n",
"\n",
"- {doc}`/tune/examples/includes/pb2_ppo_example`:\n",
" Example of optimizing a distributed RLlib algorithm (PPO) with the PB2 scheduler.\n",
" Uses a small population size of 4, so can train on a laptop."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"orphan": true
},
"nbformat": 4,
"nbformat_minor": 5
}