mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

Preview: [docs](https://ray--21931.org.readthedocs.build/en/21931/data/dataset.html) The Ray Data project's docs now have a clearer structure and have partly been rewritten/modified. In particular we have - [x] A Getting Started Guide - [x] An explicit User / How-To Guide - [x] A dedicated Key Concepts page - [x] A consistent naming convention in `Ray Data` whenever is is referred to the project. This surfaces quite clearly that, apart from the "Getting Started" sections, we really only have one real example. Once we have more, we can create an "Example" section like many other sub-projects have. This will be addressed in https://github.com/ray-project/ray/issues/21838.
164 lines
4.1 KiB
ReStructuredText
164 lines
4.1 KiB
ReStructuredText
.. _spark-on-ray:
|
|
|
|
**************************
|
|
Using Spark on Ray (RayDP)
|
|
**************************
|
|
|
|
RayDP combines your Spark and Ray clusters, making it easy to do large scale
|
|
data processing using the PySpark API and seemlessly use that data to train
|
|
your models using TensorFlow and PyTorch.
|
|
|
|
For more information and examples, see the RayDP Github page:
|
|
https://github.com/oap-project/raydp
|
|
|
|
================
|
|
Installing RayDP
|
|
================
|
|
|
|
RayDP can be installed from PyPI and supports PySpark 3.0 and 3.1.
|
|
|
|
.. code-block bash
|
|
|
|
pip install raydp
|
|
|
|
.. note::
|
|
RayDP requires ray >= 1.2.0
|
|
|
|
.. note::
|
|
In order to run Spark, the head and worker nodes will need Java installed.
|
|
|
|
========================
|
|
Creating a Spark Session
|
|
========================
|
|
|
|
To create a spark session, call ``raydp.init_spark``
|
|
|
|
For example,
|
|
|
|
.. code-block:: python
|
|
|
|
import ray
|
|
import raydp
|
|
|
|
ray.init()
|
|
spark = raydp.init_spark(
|
|
app_name = "example",
|
|
num_executors = 10,
|
|
executor_cores = 64,
|
|
executor_memory = "256GB"
|
|
)
|
|
|
|
====================================
|
|
Deep Learning with a Spark DataFrame
|
|
====================================
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
Training a Spark DataFrame with TensorFlow
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
``raydp.tf.TFEstimator`` provides an API for training with TensorFlow.
|
|
|
|
.. code-block:: python
|
|
|
|
from pyspark.sql.functions import col
|
|
df = spark.range(1, 1000)
|
|
# calculate z = x + 2y + 1000
|
|
df = df.withColumn("x", col("id")*2)\
|
|
.withColumn("y", col("id") + 200)\
|
|
.withColumn("z", col("x") + 2*col("y") + 1000)
|
|
|
|
from raydp.utils import random_split
|
|
train_df, test_df = random_split(df, [0.7, 0.3])
|
|
|
|
# TensorFlow code
|
|
from tensorflow import keras
|
|
input_1 = keras.Input(shape=(1,))
|
|
input_2 = keras.Input(shape=(1,))
|
|
|
|
concatenated = keras.layers.concatenate([input_1, input_2])
|
|
output = keras.layers.Dense(1, activation='sigmoid')(concatenated)
|
|
model = keras.Model(inputs=[input_1, input_2],
|
|
outputs=output)
|
|
|
|
optimizer = keras.optimizers.Adam(0.01)
|
|
loss = keras.losses.MeanSquaredError()
|
|
|
|
from raydp.tf import TFEstimator
|
|
estimator = TFEstimator(
|
|
num_workers=2,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
loss=loss,
|
|
metrics=["accuracy", "mse"],
|
|
feature_columns=["x", "y"],
|
|
label_column="z",
|
|
batch_size=1000,
|
|
num_epochs=2,
|
|
use_gpu=False,
|
|
config={"fit_config": {"steps_per_epoch": 2}})
|
|
|
|
estimator.fit_on_spark(train_df, test_df)
|
|
|
|
tensorflow_model = estimator.get_model()
|
|
|
|
estimator.shutdown()
|
|
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
Training a Spark DataFrame with PyTorch
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Similarly, ``raydp.torch.TorchEstimator`` provides an API for training with
|
|
PyTorch.
|
|
|
|
.. code-block:: python
|
|
|
|
from pyspark.sql.functions import col
|
|
df = spark.range(1, 1000)
|
|
# calculate z = x + 2y + 1000
|
|
df = df.withColumn("x", col("id")*2)\
|
|
.withColumn("y", col("id") + 200)\
|
|
.withColumn("z", col("x") + 2*col("y") + 1000)
|
|
|
|
from raydp.utils import random_split
|
|
train_df, test_df = random_split(df, [0.7, 0.3])
|
|
|
|
# PyTorch Code
|
|
import torch
|
|
class LinearModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(LinearModel, self).__init__()
|
|
self.linear = torch.nn.Linear(2, 1)
|
|
|
|
def forward(self, x, y):
|
|
x = torch.cat([x, y], dim=1)
|
|
return self.linear(x)
|
|
|
|
model = LinearModel()
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
loss_fn = torch.nn.MSELoss()
|
|
|
|
def lr_scheduler_creator(optimizer, config):
|
|
return torch.optim.lr_scheduler.MultiStepLR(
|
|
optimizer, milestones=[150, 250, 350], gamma=0.1)
|
|
|
|
# You can use the RayDP Estimator API or libraries like Ray Train for distributed training.
|
|
from raydp.torch import TorchEstimator
|
|
estimator = TorchEstimator(
|
|
num_workers = 2,
|
|
model = model,
|
|
optimizer = optimizer,
|
|
loss = loss_fn,
|
|
lr_scheduler_creator=lr_scheduler_creator,
|
|
feature_columns = ["x", "y"],
|
|
label_column = ["z"],
|
|
batch_size = 1000,
|
|
num_epochs = 2
|
|
)
|
|
|
|
estimator.fit_on_spark(train_df, test_df)
|
|
|
|
pytorch_model = estimator.get_model()
|
|
|
|
estimator.shutdown()
|
|
|