mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
341 lines
12 KiB
Python
341 lines
12 KiB
Python
import logging
|
|
import gym
|
|
import numpy as np
|
|
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
from ray.rllib.env.base_env import BaseEnv
|
|
from ray.rllib.utils.annotations import Deprecated, override, PublicAPI
|
|
from ray.rllib.utils.typing import EnvActionType, EnvID, EnvInfoDict, \
|
|
EnvObsType, EnvType, MultiEnvDict
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@PublicAPI
|
|
class VectorEnv:
|
|
"""An environment that supports batch evaluation using clones of sub-envs.
|
|
"""
|
|
|
|
def __init__(self, observation_space: gym.Space, action_space: gym.Space,
|
|
num_envs: int):
|
|
"""Initializes a VectorEnv instance.
|
|
|
|
Args:
|
|
observation_space: The observation Space of a single
|
|
sub-env.
|
|
action_space: The action Space of a single sub-env.
|
|
num_envs: The number of clones to make of the given sub-env.
|
|
"""
|
|
self.observation_space = observation_space
|
|
self.action_space = action_space
|
|
self.num_envs = num_envs
|
|
|
|
@staticmethod
|
|
def vectorize_gym_envs(
|
|
make_env: Optional[Callable[[int], EnvType]] = None,
|
|
existing_envs: Optional[List[gym.Env]] = None,
|
|
num_envs: int = 1,
|
|
action_space: Optional[gym.Space] = None,
|
|
observation_space: Optional[gym.Space] = None,
|
|
# Deprecated. These seem to have never been used.
|
|
env_config=None,
|
|
policy_config=None) -> "_VectorizedGymEnv":
|
|
"""Translates any given gym.Env(s) into a VectorizedEnv object.
|
|
|
|
Args:
|
|
make_env: Factory that produces a new gym.Env taking the sub-env's
|
|
vector index as only arg. Must be defined if the
|
|
number of `existing_envs` is less than `num_envs`.
|
|
existing_envs: Optional list of already instantiated sub
|
|
environments.
|
|
num_envs: Total number of sub environments in this VectorEnv.
|
|
action_space: The action space. If None, use existing_envs[0]'s
|
|
action space.
|
|
observation_space: The observation space. If None, use
|
|
existing_envs[0]'s action space.
|
|
|
|
Returns:
|
|
The resulting _VectorizedGymEnv object (subclass of VectorEnv).
|
|
"""
|
|
return _VectorizedGymEnv(
|
|
make_env=make_env,
|
|
existing_envs=existing_envs or [],
|
|
num_envs=num_envs,
|
|
observation_space=observation_space,
|
|
action_space=action_space,
|
|
)
|
|
|
|
@PublicAPI
|
|
def vector_reset(self) -> List[EnvObsType]:
|
|
"""Resets all sub-environments.
|
|
|
|
Returns:
|
|
List of observations from each environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
|
|
"""Resets a single environment.
|
|
|
|
Args:
|
|
index: An optional sub-env index to reset.
|
|
|
|
Returns:
|
|
Observations from the reset sub environment.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def vector_step(
|
|
self, actions: List[EnvActionType]
|
|
) -> Tuple[List[EnvObsType], List[float], List[bool], List[EnvInfoDict]]:
|
|
"""Performs a vectorized step on all sub environments using `actions`.
|
|
|
|
Args:
|
|
actions: List of actions (one for each sub-env).
|
|
|
|
Returns:
|
|
A tuple consisting of
|
|
1) New observations for each sub-env.
|
|
2) Reward values for each sub-env.
|
|
3) Done values for each sub-env.
|
|
4) Info values for each sub-env.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@PublicAPI
|
|
def get_sub_environments(self) -> List[EnvType]:
|
|
"""Returns the underlying sub environments.
|
|
|
|
Returns:
|
|
List of all underlying sub environments.
|
|
"""
|
|
return []
|
|
|
|
# TODO: (sven) Experimental method. Make @PublicAPI at some point.
|
|
def try_render_at(self, index: Optional[int] = None) -> \
|
|
Optional[np.ndarray]:
|
|
"""Renders a single environment.
|
|
|
|
Args:
|
|
index: An optional sub-env index to render.
|
|
|
|
Returns:
|
|
Either a numpy RGB image (shape=(w x h x 3) dtype=uint8) or
|
|
None in case rendering is handled directly by this method.
|
|
"""
|
|
pass
|
|
|
|
@Deprecated(new="vectorize_gym_envs", error=False)
|
|
def wrap(self, *args, **kwargs) -> "_VectorizedGymEnv":
|
|
return self.vectorize_gym_envs(*args, **kwargs)
|
|
|
|
@Deprecated(new="get_sub_environments", error=False)
|
|
def get_unwrapped(self) -> List[EnvType]:
|
|
return self.get_sub_environments()
|
|
|
|
@PublicAPI
|
|
def to_base_env(
|
|
self,
|
|
make_env: Callable[[int], EnvType] = None,
|
|
num_envs: int = 1,
|
|
remote_envs: bool = False,
|
|
remote_env_batch_wait_ms: int = 0,
|
|
) -> "BaseEnv":
|
|
"""Converts an RLlib MultiAgentEnv into a BaseEnv object.
|
|
|
|
The resulting BaseEnv is always vectorized (contains n
|
|
sub-environments) to support batched forward passes, where n may
|
|
also be 1. BaseEnv also supports async execution via the `poll` and
|
|
`send_actions` methods and thus supports external simulators.
|
|
|
|
Args:
|
|
make_env: A callable taking an int as input (which indicates
|
|
the number of individual sub-environments within the final
|
|
vectorized BaseEnv) and returning one individual
|
|
sub-environment.
|
|
num_envs: The number of sub-environments to create in the
|
|
resulting (vectorized) BaseEnv. The already existing `env`
|
|
will be one of the `num_envs`.
|
|
remote_envs: Whether each sub-env should be a @ray.remote
|
|
actor. You can set this behavior in your config via the
|
|
`remote_worker_envs=True` option.
|
|
remote_env_batch_wait_ms: The wait time (in ms) to poll remote
|
|
sub-environments for, if applicable. Only used if
|
|
`remote_envs` is True.
|
|
|
|
Returns:
|
|
The resulting BaseEnv object.
|
|
"""
|
|
del make_env, num_envs, remote_envs, remote_env_batch_wait_ms
|
|
env = VectorEnvWrapper(self)
|
|
return env
|
|
|
|
|
|
class _VectorizedGymEnv(VectorEnv):
|
|
"""Internal wrapper to translate any gym.Envs into a VectorEnv object.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
make_env: Optional[Callable[[int], EnvType]] = None,
|
|
existing_envs: Optional[List[gym.Env]] = None,
|
|
num_envs: int = 1,
|
|
*,
|
|
observation_space: Optional[gym.Space] = None,
|
|
action_space: Optional[gym.Space] = None,
|
|
# Deprecated. These seem to have never been used.
|
|
env_config=None,
|
|
policy_config=None,
|
|
):
|
|
"""Initializes a _VectorizedGymEnv object.
|
|
|
|
Args:
|
|
make_env: Factory that produces a new gym.Env taking the sub-env's
|
|
vector index as only arg. Must be defined if the
|
|
number of `existing_envs` is less than `num_envs`.
|
|
existing_envs: Optional list of already instantiated sub
|
|
environments.
|
|
num_envs: Total number of sub environments in this VectorEnv.
|
|
action_space: The action space. If None, use existing_envs[0]'s
|
|
action space.
|
|
observation_space: The observation space. If None, use
|
|
existing_envs[0]'s action space.
|
|
"""
|
|
self.envs = existing_envs
|
|
|
|
# Fill up missing envs (so we have exactly num_envs sub-envs in this
|
|
# VectorEnv.
|
|
while len(self.envs) < num_envs:
|
|
self.envs.append(make_env(len(self.envs)))
|
|
|
|
super().__init__(
|
|
observation_space=observation_space
|
|
or self.envs[0].observation_space,
|
|
action_space=action_space or self.envs[0].action_space,
|
|
num_envs=num_envs)
|
|
|
|
@override(VectorEnv)
|
|
def vector_reset(self):
|
|
return [e.reset() for e in self.envs]
|
|
|
|
@override(VectorEnv)
|
|
def reset_at(self, index: Optional[int] = None) -> EnvObsType:
|
|
if index is None:
|
|
index = 0
|
|
return self.envs[index].reset()
|
|
|
|
@override(VectorEnv)
|
|
def vector_step(self, actions):
|
|
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
|
|
for i in range(self.num_envs):
|
|
obs, r, done, info = self.envs[i].step(actions[i])
|
|
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
|
|
raise ValueError(
|
|
"Reward should be finite scalar, got {} ({}). "
|
|
"Actions={}.".format(r, type(r), actions[i]))
|
|
if not isinstance(info, dict):
|
|
raise ValueError("Info should be a dict, got {} ({})".format(
|
|
info, type(info)))
|
|
obs_batch.append(obs)
|
|
rew_batch.append(r)
|
|
done_batch.append(done)
|
|
info_batch.append(info)
|
|
return obs_batch, rew_batch, done_batch, info_batch
|
|
|
|
@override(VectorEnv)
|
|
def get_sub_environments(self):
|
|
return self.envs
|
|
|
|
@override(VectorEnv)
|
|
def try_render_at(self, index: Optional[int] = None):
|
|
if index is None:
|
|
index = 0
|
|
return self.envs[index].render()
|
|
|
|
|
|
class VectorEnvWrapper(BaseEnv):
|
|
"""Internal adapter of VectorEnv to BaseEnv.
|
|
|
|
We assume the caller will always send the full vector of actions in each
|
|
call to send_actions(), and that they call reset_at() on all completed
|
|
environments before calling send_actions().
|
|
"""
|
|
|
|
def __init__(self, vector_env: VectorEnv):
|
|
self.vector_env = vector_env
|
|
self.num_envs = vector_env.num_envs
|
|
self.new_obs = None # lazily initialized
|
|
self.cur_rewards = [None for _ in range(self.num_envs)]
|
|
self.cur_dones = [False for _ in range(self.num_envs)]
|
|
self.cur_infos = [None for _ in range(self.num_envs)]
|
|
self._observation_space = vector_env.observation_space
|
|
self._action_space = vector_env.action_space
|
|
|
|
@override(BaseEnv)
|
|
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
|
|
MultiEnvDict, MultiEnvDict]:
|
|
from ray.rllib.env.base_env import with_dummy_agent_id
|
|
if self.new_obs is None:
|
|
self.new_obs = self.vector_env.vector_reset()
|
|
new_obs = dict(enumerate(self.new_obs))
|
|
rewards = dict(enumerate(self.cur_rewards))
|
|
dones = dict(enumerate(self.cur_dones))
|
|
infos = dict(enumerate(self.cur_infos))
|
|
self.new_obs = []
|
|
self.cur_rewards = []
|
|
self.cur_dones = []
|
|
self.cur_infos = []
|
|
return with_dummy_agent_id(new_obs), \
|
|
with_dummy_agent_id(rewards), \
|
|
with_dummy_agent_id(dones, "__all__"), \
|
|
with_dummy_agent_id(infos), {}
|
|
|
|
@override(BaseEnv)
|
|
def send_actions(self, action_dict: MultiEnvDict) -> None:
|
|
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
|
|
action_vector = [None] * self.num_envs
|
|
for i in range(self.num_envs):
|
|
action_vector[i] = action_dict[i][_DUMMY_AGENT_ID]
|
|
self.new_obs, self.cur_rewards, self.cur_dones, self.cur_infos = \
|
|
self.vector_env.vector_step(action_vector)
|
|
|
|
@override(BaseEnv)
|
|
def try_reset(self, env_id: Optional[EnvID] = None) -> MultiEnvDict:
|
|
from ray.rllib.env.base_env import _DUMMY_AGENT_ID
|
|
assert env_id is None or isinstance(env_id, int)
|
|
return {
|
|
env_id if env_id is not None else 0: {
|
|
_DUMMY_AGENT_ID: self.vector_env.reset_at(env_id)
|
|
}
|
|
}
|
|
|
|
@override(BaseEnv)
|
|
def get_sub_environments(
|
|
self, as_dict: bool = False) -> Union[List[EnvType], dict]:
|
|
if not as_dict:
|
|
return self.vector_env.get_sub_environments()
|
|
else:
|
|
return {
|
|
_id: env
|
|
for _id, env in enumerate(
|
|
self.vector_env.get_sub_environments())
|
|
}
|
|
|
|
@override(BaseEnv)
|
|
def try_render(self, env_id: Optional[EnvID] = None) -> None:
|
|
assert env_id is None or isinstance(env_id, int)
|
|
return self.vector_env.try_render_at(env_id)
|
|
|
|
@property
|
|
@override(BaseEnv)
|
|
@PublicAPI
|
|
def observation_space(self) -> gym.spaces.Dict:
|
|
return self._observation_space
|
|
|
|
@property
|
|
@override(BaseEnv)
|
|
@PublicAPI
|
|
def action_space(self) -> gym.Space:
|
|
return self._action_space
|