ray/rllib/algorithms/bandit/tests/test_bandits.py

72 lines
2.4 KiB
Python

import unittest
import ray
from ray.rllib.algorithms.bandit import bandit
from ray.rllib.examples.env.bandit_envs_discrete import SimpleContextualBandit
from ray.rllib.utils.test_utils import check_train_results, framework_iterator
class TestBandits(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_bandit_lin_ts_compilation(self):
"""Test whether BanditLinTS can be built on all frameworks."""
config = (
bandit.BanditLinTSConfig()
.environment(env=SimpleContextualBandit)
.rollouts(num_rollout_workers=2, num_envs_per_worker=2)
)
num_iterations = 5
for _ in framework_iterator(
config, frameworks=("tf2", "torch"), with_eager_tracing=True
):
for train_batch_size in [1, 10]:
config.training(train_batch_size=train_batch_size)
algo = config.build()
results = None
for _ in range(num_iterations):
results = algo.train()
check_train_results(results)
print(results)
# Force good learning behavior (this is a very simple env).
self.assertTrue(results["episode_reward_mean"] == 10.0)
algo.stop()
def test_bandit_lin_ucb_compilation(self):
"""Test whether BanditLinUCB can be built on all frameworks."""
config = (
bandit.BanditLinUCBConfig()
.environment(env=SimpleContextualBandit)
.rollouts(num_envs_per_worker=2)
)
num_iterations = 5
for _ in framework_iterator(
config, frameworks=("tf2", "torch"), with_eager_tracing=True
):
for train_batch_size in [1, 10]:
config.training(train_batch_size=train_batch_size)
trainer = config.build()
results = None
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
# Force good learning behavior (this is a very simple env).
self.assertTrue(results["episode_reward_mean"] == 10.0)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))