ray/rllib
Sven Mika 5ac5ac9560
[RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021)
* WIP.

* Fix float32 conversion in OneHot preprocessor (would cause float64 in eager, then NN-matmul-failure).
Add proper seq-len + state-in construction in eager_tf_policy.py::_compute_gradients().

* LINT.

* eager_tf_policy.py: Only set samples["seq_lens"] if RNN. Otherwise, eager-tracing will throw flattened-dict key-mismatch error.

* Move issue code to examples folder.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-02-06 09:44:08 -08:00
..
agents [rllib] Support parallel, parameterized evaluation (#6981) 2020-02-01 22:12:12 -08:00
contrib [RLlib] Update MADDPG example repo to maintained fork (#6831) 2020-01-18 13:08:27 -08:00
env Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
evaluation [RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021) 2020-02-06 09:44:08 -08:00
examples [RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021) 2020-02-06 09:44:08 -08:00
models [RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021) 2020-02-06 09:44:08 -08:00
offline Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
optimizers [RLlib] Bug fix: PR anneals beta parameter beyond final given value. (#6973) 2020-01-31 09:55:03 -08:00
policy [RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021) 2020-02-06 09:44:08 -08:00
tests [RLlib] Fix broken example: tf-eager with custom-RNN (#6732). (#7021) 2020-02-06 09:44:08 -08:00
tuned_examples Add cartpole PPO torch to regression (besides tf). (#7005) 2020-02-01 17:41:38 -08:00
utils [RLlib] Experiment with py_func as a means to further unify tf and torch (Schedule classes). (#6951) 2020-01-30 11:27:57 -08:00
__init__.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
asv.conf.json [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
BUILD [RLlib] Schedule-classes multi-framework support. (#6926) 2020-01-28 11:07:55 -08:00
README.md MADDPG implementation in RLlib (#5348) 2019-08-06 16:22:06 -07:00
rollout.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
scripts.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
train.py [RLlib] Add torch flag to train.py (#6807) 2020-01-17 18:48:44 -08:00

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a unified API for a variety of applications.

For an overview of RLlib, see the documentation.

If you've found RLlib useful for your research, you can cite the paper as follows:

@inproceedings{liang2018rllib,
    Author = {Eric Liang and
              Richard Liaw and
              Robert Nishihara and
              Philipp Moritz and
              Roy Fox and
              Ken Goldberg and
              Joseph E. Gonzalez and
              Michael I. Jordan and
              Ion Stoica},
    Title = {{RLlib}: Abstractions for Distributed Reinforcement Learning},
    Booktitle = {International Conference on Machine Learning ({ICML})},
    Year = {2018}
}

Development Install

You can develop RLlib locally without needing to compile Ray by using the setup-dev.py script. This sets up links between the rllib dir in your git repo and the one bundled with the ray package. When using this script, make sure that your git branch is in sync with the installed Ray binaries (i.e., you are up-to-date on master and have the latest wheel installed.)