ray/rllib/algorithms/dqn/distributional_q_tf_model.py

188 lines
7.8 KiB
Python

"""Tensorflow model for DQN"""
from typing import List
import gym
from ray.rllib.models.tf.layers import NoisyLayer
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.typing import ModelConfigDict, TensorType
tf1, tf, tfv = try_import_tf()
class DistributionalQTFModel(TFModelV2):
"""Extension of standard TFModel to provide distributional Q values.
It also supports options for noisy nets and parameter space noise.
Data flow:
obs -> forward() -> model_out
model_out -> get_q_value_distributions() -> Q(s, a) atoms
model_out -> get_state_value() -> V(s)
Note that this class by itself is not a valid model unless you
implement forward() in a subclass."""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
q_hiddens=(256,),
dueling: bool = False,
num_atoms: int = 1,
use_noisy: bool = False,
v_min: float = -10.0,
v_max: float = 10.0,
sigma0: float = 0.5,
# TODO(sven): Move `add_layer_norm` into ModelCatalog as
# generic option, then error if we use ParameterNoise as
# Exploration type and do not have any LayerNorm layers in
# the net.
add_layer_norm: bool = False,
):
"""Initialize variables of this model.
Extra model kwargs:
q_hiddens (List[int]): List of layer-sizes after(!) the
Advantages(A)/Value(V)-split. Hence, each of the A- and V-
branches will have this structure of Dense layers. To define
the NN before this A/V-split, use - as always -
config["model"]["fcnet_hiddens"].
dueling (bool): Whether to build the advantage(A)/value(V) heads
for DDQN. If True, Q-values are calculated as:
Q = (A - mean[A]) + V. If False, raw NN output is interpreted
as Q-values.
num_atoms (int): If >1, enables distributional DQN.
use_noisy (bool): Use noisy nets.
v_min (float): Min value support for distributional DQN.
v_max (float): Max value support for distributional DQN.
sigma0 (float): Initial value of noisy layers.
add_layer_norm (bool): Enable layer norm (for param noise).
Note that the core layers for forward() are not defined here, this
only defines the layers for the Q head. Those layers for forward()
should be defined in subclasses of DistributionalQModel.
"""
super(DistributionalQTFModel, self).__init__(
obs_space, action_space, num_outputs, model_config, name
)
# setup the Q head output (i.e., model for get_q_values)
self.model_out = tf.keras.layers.Input(shape=(num_outputs,), name="model_out")
def build_action_value(prefix: str, model_out: TensorType) -> List[TensorType]:
if q_hiddens:
action_out = model_out
for i in range(len(q_hiddens)):
if use_noisy:
action_out = NoisyLayer(
"{}hidden_{}".format(prefix, i), q_hiddens[i], sigma0
)(action_out)
elif add_layer_norm:
action_out = tf.keras.layers.Dense(
units=q_hiddens[i], activation=tf.nn.relu
)(action_out)
action_out = tf.keras.layers.LayerNormalization()(action_out)
else:
action_out = tf.keras.layers.Dense(
units=q_hiddens[i],
activation=tf.nn.relu,
name="hidden_%d" % i,
)(action_out)
else:
# Avoid postprocessing the outputs. This enables custom models
# to be used for parametric action DQN.
action_out = model_out
if use_noisy:
action_scores = NoisyLayer(
"{}output".format(prefix),
self.action_space.n * num_atoms,
sigma0,
activation=None,
)(action_out)
elif q_hiddens:
action_scores = tf.keras.layers.Dense(
units=self.action_space.n * num_atoms, activation=None
)(action_out)
else:
action_scores = model_out
if num_atoms > 1:
# Distributional Q-learning uses a discrete support z
# to represent the action value distribution
z = tf.range(num_atoms, dtype=tf.float32)
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
def _layer(x):
support_logits_per_action = tf.reshape(
tensor=x, shape=(-1, self.action_space.n, num_atoms)
)
support_prob_per_action = tf.nn.softmax(
logits=support_logits_per_action
)
x = tf.reduce_sum(input_tensor=z * support_prob_per_action, axis=-1)
logits = support_logits_per_action
dist = support_prob_per_action
return [x, z, support_logits_per_action, logits, dist]
return tf.keras.layers.Lambda(_layer)(action_scores)
else:
logits = tf.expand_dims(tf.ones_like(action_scores), -1)
dist = tf.expand_dims(tf.ones_like(action_scores), -1)
return [action_scores, logits, dist]
def build_state_score(prefix: str, model_out: TensorType) -> TensorType:
state_out = model_out
for i in range(len(q_hiddens)):
if use_noisy:
state_out = NoisyLayer(
"{}dueling_hidden_{}".format(prefix, i), q_hiddens[i], sigma0
)(state_out)
else:
state_out = tf.keras.layers.Dense(
units=q_hiddens[i], activation=tf.nn.relu
)(state_out)
if add_layer_norm:
state_out = tf.keras.layers.LayerNormalization()(state_out)
if use_noisy:
state_score = NoisyLayer(
"{}dueling_output".format(prefix),
num_atoms,
sigma0,
activation=None,
)(state_out)
else:
state_score = tf.keras.layers.Dense(units=num_atoms, activation=None)(
state_out
)
return state_score
q_out = build_action_value(name + "/action_value/", self.model_out)
self.q_value_head = tf.keras.Model(self.model_out, q_out)
if dueling:
state_out = build_state_score(name + "/state_value/", self.model_out)
self.state_value_head = tf.keras.Model(self.model_out, state_out)
def get_q_value_distributions(self, model_out: TensorType) -> List[TensorType]:
"""Returns distributional values for Q(s, a) given a state embedding.
Override this in your custom model to customize the Q output head.
Args:
model_out (Tensor): embedding from the model layers
Returns:
(action_scores, logits, dist) if num_atoms == 1, otherwise
(action_scores, z, support_logits_per_action, logits, dist)
"""
return self.q_value_head(model_out)
def get_state_value(self, model_out: TensorType) -> TensorType:
"""Returns the state value prediction for the given state embedding."""
return self.state_value_head(model_out)