mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
503 lines
18 KiB
Python
503 lines
18 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import ray
|
|
import numpy as np
|
|
import time
|
|
|
|
|
|
class TaskTests(unittest.TestCase):
|
|
|
|
def testSubmittingTasks(self):
|
|
for num_local_schedulers in [1, 4]:
|
|
for num_workers_per_scheduler in [4]:
|
|
num_workers = num_local_schedulers * num_workers_per_scheduler
|
|
ray.worker._init(start_ray_local=True, num_workers=num_workers,
|
|
num_local_schedulers=num_local_schedulers,
|
|
num_cpus=100)
|
|
|
|
@ray.remote
|
|
def f(x):
|
|
return x
|
|
|
|
for _ in range(1):
|
|
ray.get([f.remote(1) for _ in range(1000)])
|
|
|
|
for _ in range(10):
|
|
ray.get([f.remote(1) for _ in range(100)])
|
|
|
|
for _ in range(100):
|
|
ray.get([f.remote(1) for _ in range(10)])
|
|
|
|
for _ in range(1000):
|
|
ray.get([f.remote(1) for _ in range(1)])
|
|
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
def testDependencies(self):
|
|
for num_local_schedulers in [1, 4]:
|
|
for num_workers_per_scheduler in [4]:
|
|
num_workers = num_local_schedulers * num_workers_per_scheduler
|
|
ray.worker._init(start_ray_local=True, num_workers=num_workers,
|
|
num_local_schedulers=num_local_schedulers,
|
|
num_cpus=100)
|
|
|
|
@ray.remote
|
|
def f(x):
|
|
return x
|
|
|
|
x = 1
|
|
for _ in range(1000):
|
|
x = f.remote(x)
|
|
ray.get(x)
|
|
|
|
@ray.remote
|
|
def g(*xs):
|
|
return 1
|
|
|
|
xs = [g.remote(1)]
|
|
for _ in range(100):
|
|
xs.append(g.remote(*xs))
|
|
xs.append(g.remote(1))
|
|
ray.get(xs)
|
|
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
def testSubmittingManyTasks(self):
|
|
ray.init()
|
|
|
|
@ray.remote
|
|
def f(x):
|
|
return 1
|
|
|
|
def g(n):
|
|
x = 1
|
|
for i in range(n):
|
|
x = f.remote(x)
|
|
return x
|
|
|
|
ray.get([g(1000) for _ in range(100)])
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
def testGettingAndPutting(self):
|
|
ray.init(num_workers=1)
|
|
|
|
for n in range(8):
|
|
x = np.zeros(10 ** n)
|
|
|
|
for _ in range(100):
|
|
ray.put(x)
|
|
|
|
x_id = ray.put(x)
|
|
for _ in range(1000):
|
|
ray.get(x_id)
|
|
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
def testGettingManyObjects(self):
|
|
ray.init()
|
|
|
|
@ray.remote
|
|
def f():
|
|
return 1
|
|
|
|
n = 10 ** 4 # TODO(pcm): replace by 10 ** 5 once this is faster.
|
|
l = ray.get([f.remote() for _ in range(n)])
|
|
self.assertEqual(l, n * [1])
|
|
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
def testWait(self):
|
|
for num_local_schedulers in [1, 4]:
|
|
for num_workers_per_scheduler in [4]:
|
|
num_workers = num_local_schedulers * num_workers_per_scheduler
|
|
ray.worker._init(start_ray_local=True, num_workers=num_workers,
|
|
num_local_schedulers=num_local_schedulers,
|
|
num_cpus=100)
|
|
|
|
@ray.remote
|
|
def f(x):
|
|
return x
|
|
|
|
x_ids = [f.remote(i) for i in range(100)]
|
|
for i in range(len(x_ids)):
|
|
ray.wait([x_ids[i]])
|
|
for i in range(len(x_ids) - 1):
|
|
ray.wait(x_ids[i:])
|
|
|
|
@ray.remote
|
|
def g(x):
|
|
time.sleep(x)
|
|
|
|
for i in range(1, 5):
|
|
x_ids = [g.remote(np.random.uniform(0, i))
|
|
for _ in range(2 * num_workers)]
|
|
ray.wait(x_ids, num_returns=len(x_ids))
|
|
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
ray.worker.cleanup()
|
|
|
|
|
|
class ReconstructionTests(unittest.TestCase):
|
|
|
|
num_local_schedulers = 1
|
|
|
|
def setUp(self):
|
|
# Start the Redis global state store.
|
|
node_ip_address = "127.0.0.1"
|
|
redis_address, redis_shards = ray.services.start_redis(node_ip_address)
|
|
self.redis_ip_address = ray.services.get_ip_address(redis_address)
|
|
self.redis_port = ray.services.get_port(redis_address)
|
|
time.sleep(0.1)
|
|
|
|
# Start the Plasma store instances with a total of 1GB memory.
|
|
self.plasma_store_memory = 10 ** 9
|
|
plasma_addresses = []
|
|
objstore_memory = (self.plasma_store_memory //
|
|
self.num_local_schedulers)
|
|
for i in range(self.num_local_schedulers):
|
|
store_stdout_file, store_stderr_file = ray.services.new_log_files(
|
|
"plasma_store_{}".format(i), True)
|
|
manager_stdout_file, manager_stderr_file = (
|
|
ray.services.new_log_files("plasma_manager_{}"
|
|
.format(i), True))
|
|
plasma_addresses.append(ray.services.start_objstore(
|
|
node_ip_address, redis_address,
|
|
objstore_memory=objstore_memory,
|
|
store_stdout_file=store_stdout_file,
|
|
store_stderr_file=store_stderr_file,
|
|
manager_stdout_file=manager_stdout_file,
|
|
manager_stderr_file=manager_stderr_file))
|
|
|
|
# Start the rest of the services in the Ray cluster.
|
|
address_info = {"redis_address": redis_address,
|
|
"redis_shards": redis_shards,
|
|
"object_store_addresses": plasma_addresses}
|
|
ray.worker._init(address_info=address_info, start_ray_local=True,
|
|
num_workers=1,
|
|
num_local_schedulers=self.num_local_schedulers,
|
|
num_cpus=[1] * self.num_local_schedulers,
|
|
redirect_output=True,
|
|
driver_mode=ray.SILENT_MODE)
|
|
|
|
def tearDown(self):
|
|
self.assertTrue(ray.services.all_processes_alive())
|
|
|
|
# Determine the IDs of all local schedulers that had a task scheduled
|
|
# or submitted.
|
|
state = ray.experimental.state.GlobalState()
|
|
state._initialize_global_state(self.redis_ip_address, self.redis_port)
|
|
tasks = state.task_table()
|
|
local_scheduler_ids = set(task["LocalSchedulerID"] for task in
|
|
tasks.values())
|
|
|
|
# Make sure that all nodes in the cluster were used by checking that
|
|
# the set of local scheduler IDs that had a task scheduled or submitted
|
|
# is equal to the total number of local schedulers started. We add one
|
|
# to the total number of local schedulers to account for
|
|
# NIL_LOCAL_SCHEDULER_ID. This is the local scheduler ID associated
|
|
# with the driver task, since it is not scheduled by a particular local
|
|
# scheduler.
|
|
self.assertEqual(len(local_scheduler_ids),
|
|
self.num_local_schedulers + 1)
|
|
|
|
# Clean up the Ray cluster.
|
|
ray.worker.cleanup()
|
|
|
|
def testSimple(self):
|
|
# Define the size of one task's return argument so that the combined
|
|
# sum of all objects' sizes is at least twice the plasma stores'
|
|
# combined allotted memory.
|
|
num_objects = 1000
|
|
size = int(self.plasma_store_memory * 1.5 / (num_objects * 8))
|
|
|
|
# Define a remote task with no dependencies, which returns a numpy
|
|
# array of the given size.
|
|
@ray.remote
|
|
def foo(i, size):
|
|
array = np.zeros(size)
|
|
array[0] = i
|
|
return array
|
|
|
|
# Launch num_objects instances of the remote task.
|
|
args = []
|
|
for i in range(num_objects):
|
|
args.append(foo.remote(i, size))
|
|
|
|
# Get each value to force each task to finish. After some number of
|
|
# gets, old values should be evicted.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get each value again to force reconstruction.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get values sequentially, in chunks.
|
|
num_chunks = 4 * self.num_local_schedulers
|
|
chunk = num_objects // num_chunks
|
|
for i in range(num_chunks):
|
|
values = ray.get(args[i * chunk:(i + 1) * chunk])
|
|
del values
|
|
|
|
def testRecursive(self):
|
|
# Define the size of one task's return argument so that the combined
|
|
# sum of all objects' sizes is at least twice the plasma stores'
|
|
# combined allotted memory.
|
|
num_objects = 1000
|
|
size = int(self.plasma_store_memory * 1.5 / (num_objects * 8))
|
|
|
|
# Define a root task with no dependencies, which returns a numpy array
|
|
# of the given size.
|
|
@ray.remote
|
|
def no_dependency_task(size):
|
|
array = np.zeros(size)
|
|
return array
|
|
|
|
# Define a task with a single dependency, which returns its one
|
|
# argument.
|
|
@ray.remote
|
|
def single_dependency(i, arg):
|
|
arg = np.copy(arg)
|
|
arg[0] = i
|
|
return arg
|
|
|
|
# Launch num_objects instances of the remote task, each dependent on
|
|
# the one before it.
|
|
arg = no_dependency_task.remote(size)
|
|
args = []
|
|
for i in range(num_objects):
|
|
arg = single_dependency.remote(i, arg)
|
|
args.append(arg)
|
|
|
|
# Get each value to force each task to finish. After some number of
|
|
# gets, old values should be evicted.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get each value again to force reconstruction.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get 10 values randomly.
|
|
for _ in range(10):
|
|
i = np.random.randint(num_objects)
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get values sequentially, in chunks.
|
|
num_chunks = 4 * self.num_local_schedulers
|
|
chunk = num_objects // num_chunks
|
|
for i in range(num_chunks):
|
|
values = ray.get(args[i * chunk:(i + 1) * chunk])
|
|
del values
|
|
|
|
def testMultipleRecursive(self):
|
|
# Define the size of one task's return argument so that the combined
|
|
# sum of all objects' sizes is at least twice the plasma stores'
|
|
# combined allotted memory.
|
|
num_objects = 1000
|
|
size = self.plasma_store_memory * 2 // (num_objects * 8)
|
|
|
|
# Define a root task with no dependencies, which returns a numpy array
|
|
# of the given size.
|
|
@ray.remote
|
|
def no_dependency_task(size):
|
|
array = np.zeros(size)
|
|
return array
|
|
|
|
# Define a task with multiple dependencies, which returns its first
|
|
# argument.
|
|
@ray.remote
|
|
def multiple_dependency(i, arg1, arg2, arg3):
|
|
arg1 = np.copy(arg1)
|
|
arg1[0] = i
|
|
return arg1
|
|
|
|
# Launch num_args instances of the root task. Then launch num_objects
|
|
# instances of the multi-dependency remote task, each dependent on the
|
|
# num_args tasks before it.
|
|
num_args = 3
|
|
args = []
|
|
for i in range(num_args):
|
|
arg = no_dependency_task.remote(size)
|
|
args.append(arg)
|
|
for i in range(num_objects):
|
|
args.append(multiple_dependency.remote(i, *args[i:i + num_args]))
|
|
|
|
# Get each value to force each task to finish. After some number of
|
|
# gets, old values should be evicted.
|
|
args = args[num_args:]
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get each value again to force reconstruction.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get 10 values randomly.
|
|
for _ in range(10):
|
|
i = np.random.randint(num_objects)
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
|
|
def wait_for_errors(self, error_check):
|
|
# Wait for errors from all the nondeterministic tasks.
|
|
errors = []
|
|
time_left = 100
|
|
while time_left > 0:
|
|
errors = ray.error_info()
|
|
if error_check(errors):
|
|
break
|
|
time_left -= 1
|
|
time.sleep(1)
|
|
|
|
# Make sure that enough errors came through.
|
|
self.assertTrue(error_check(errors))
|
|
return errors
|
|
|
|
def testNondeterministicTask(self):
|
|
# Define the size of one task's return argument so that the combined
|
|
# sum of all objects' sizes is at least twice the plasma stores'
|
|
# combined allotted memory.
|
|
num_objects = 1000
|
|
size = self.plasma_store_memory * 2 // (num_objects * 8)
|
|
|
|
# Define a nondeterministic remote task with no dependencies, which
|
|
# returns a random numpy array of the given size. This task should
|
|
# produce an error on the driver if it is ever reexecuted.
|
|
@ray.remote
|
|
def foo(i, size):
|
|
array = np.random.rand(size)
|
|
array[0] = i
|
|
return array
|
|
|
|
# Define a deterministic remote task with no dependencies, which
|
|
# returns a numpy array of zeros of the given size.
|
|
@ray.remote
|
|
def bar(i, size):
|
|
array = np.zeros(size)
|
|
array[0] = i
|
|
return array
|
|
|
|
# Launch num_objects instances, half deterministic and half
|
|
# nondeterministic.
|
|
args = []
|
|
for i in range(num_objects):
|
|
if i % 2 == 0:
|
|
args.append(foo.remote(i, size))
|
|
else:
|
|
args.append(bar.remote(i, size))
|
|
|
|
# Get each value to force each task to finish. After some number of
|
|
# gets, old values should be evicted.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
# Get each value again to force reconstruction.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
|
|
def error_check(errors):
|
|
if self.num_local_schedulers == 1:
|
|
# In a single-node setting, each object is evicted and
|
|
# reconstructed exactly once, so exactly half the objects will
|
|
# produce an error during reconstruction.
|
|
min_errors = num_objects // 2
|
|
else:
|
|
# In a multinode setting, each object is evicted zero or one
|
|
# times, so some of the nondeterministic tasks may not be
|
|
# reexecuted.
|
|
min_errors = 1
|
|
return len(errors) >= min_errors
|
|
errors = self.wait_for_errors(error_check)
|
|
# Make sure all the errors have the correct type.
|
|
self.assertTrue(all(error[b"type"] == b"object_hash_mismatch"
|
|
for error in errors))
|
|
# Make sure all the errors have the correct function name.
|
|
self.assertTrue(all(error[b"data"] == b"__main__.foo"
|
|
for error in errors))
|
|
|
|
def testDriverPutErrors(self):
|
|
# Define the size of one task's return argument so that the combined
|
|
# sum of all objects' sizes is at least twice the plasma stores'
|
|
# combined allotted memory.
|
|
num_objects = 1000
|
|
size = self.plasma_store_memory * 2 // (num_objects * 8)
|
|
|
|
# Define a task with a single dependency, a numpy array, that returns
|
|
# another array.
|
|
@ray.remote
|
|
def single_dependency(i, arg):
|
|
arg = np.copy(arg)
|
|
arg[0] = i
|
|
return arg
|
|
|
|
# Launch num_objects instances of the remote task, each dependent on
|
|
# the one before it. The first instance of the task takes a numpy array
|
|
# as an argument, which is put into the object store.
|
|
args = []
|
|
arg = single_dependency.remote(0, np.zeros(size))
|
|
for i in range(num_objects):
|
|
arg = single_dependency.remote(i, arg)
|
|
args.append(arg)
|
|
# Get each value to force each task to finish. After some number of
|
|
# gets, old values should be evicted.
|
|
for i in range(num_objects):
|
|
value = ray.get(args[i])
|
|
self.assertEqual(value[0], i)
|
|
|
|
# Get each value starting from the beginning to force reconstruction.
|
|
# Currently, since we're not able to reconstruct `ray.put` objects that
|
|
# were evicted and whose originating tasks are still running, this
|
|
# for-loop should hang on its first iteration and push an error to the
|
|
# driver.
|
|
ray.worker.global_worker.local_scheduler_client.reconstruct_object(
|
|
args[0].id())
|
|
|
|
def error_check(errors):
|
|
return len(errors) > 1
|
|
errors = self.wait_for_errors(error_check)
|
|
self.assertTrue(all(error[b"type"] == b"put_reconstruction"
|
|
for error in errors))
|
|
self.assertTrue(all(error[b"data"] == b"Driver" for error in errors))
|
|
|
|
|
|
class ReconstructionTestsMultinode(ReconstructionTests):
|
|
|
|
# Run the same tests as the single-node suite, but with 4 local schedulers,
|
|
# one worker each.
|
|
num_local_schedulers = 4
|
|
|
|
# NOTE(swang): This test tries to launch 1000 workers and breaks.
|
|
# class WorkerPoolTests(unittest.TestCase):
|
|
#
|
|
# def tearDown(self):
|
|
# ray.worker.cleanup()
|
|
#
|
|
# def testBlockingTasks(self):
|
|
# @ray.remote
|
|
# def f(i, j):
|
|
# return (i, j)
|
|
#
|
|
# @ray.remote
|
|
# def g(i):
|
|
# # Each instance of g submits and blocks on the result of another remote
|
|
# # task.
|
|
# object_ids = [f.remote(i, j) for j in range(10)]
|
|
# return ray.get(object_ids)
|
|
#
|
|
# ray.init(num_workers=1)
|
|
# ray.get([g.remote(i) for i in range(1000)])
|
|
# ray.worker.cleanup()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2)
|