ray/test/jenkins_tests/run_multi_node_tests.sh
Eric Liang 5a50e0e1d7 [rllib] Add the ability to run arbitrary Python scripts with ray.tune (#1132)
* fix yaml bug

* add ext agent

* gpus

* update

* tuning

* docs

* Sun Oct 15 21:09:25 PDT 2017

* lint

* update

* Sun Oct 15 22:39:55 PDT 2017

* Sun Oct 15 22:40:17 PDT 2017

* Sun Oct 15 22:43:06 PDT 2017

* Sun Oct 15 22:46:06 PDT 2017

* Sun Oct 15 22:46:21 PDT 2017

* Sun Oct 15 22:48:11 PDT 2017

* Sun Oct 15 22:48:44 PDT 2017

* Sun Oct 15 22:49:23 PDT 2017

* Sun Oct 15 22:50:21 PDT 2017

* Sun Oct 15 22:53:00 PDT 2017

* Sun Oct 15 22:53:34 PDT 2017

* Sun Oct 15 22:54:33 PDT 2017

* Sun Oct 15 22:54:50 PDT 2017

* Sun Oct 15 22:55:20 PDT 2017

* Sun Oct 15 22:56:56 PDT 2017

* Sun Oct 15 22:59:03 PDT 2017

* fix

* Update tune_mnist_ray.py

* remove script trial

* fix

* reorder

* fix ex

* py2 support

* upd

* comments

* comments

* cleanup readme

* fix trial

* annotate

* Update rllib.rst
2017-10-18 11:49:28 -07:00

122 lines
4.7 KiB
Bash
Executable file

#!/usr/bin/env bash
# Cause the script to exit if a single command fails.
set -e
# Show explicitly which commands are currently running.
set -x
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
DOCKER_SHA=$($ROOT_DIR/../../build-docker.sh --output-sha --no-cache)
echo "Using Docker image" $DOCKER_SHA
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=10 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/test_0.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=5 \
--num-gpus=0,1,2,3,4 \
--num-drivers=7 \
--driver-locations=0,1,0,1,2,3,4 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/remove_driver_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=5 \
--num-redis-shards=2 \
--num-gpus=0,0,5,6,50 \
--num-drivers=100 \
--test-script=/ray/test/jenkins_tests/multi_node_tests/many_drivers_test.py
python $ROOT_DIR/multi_node_docker_test.py \
--docker-image=$DOCKER_SHA \
--num-nodes=1 \
--mem-size=60G \
--shm-size=60G \
--test-script=/ray/test/jenkins_tests/multi_node_tests/large_memory_test.py
# Test that the example applications run.
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/lbfgs/driver.py
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/rl_pong/driver.py \
# --iterations=3
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_simple.py
# docker run --shm-size=10G --memory=10G $DOCKER_SHA \
# python /ray/examples/hyperopt/hyperopt_adaptive.py
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v0 \
--alg A3C \
--stop '{"training_iteration": 2}' \
--config '{"num_workers": 16}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--alg PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"free_log_std": true}}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v1 \
--alg PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "use_gae": false}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env Pendulum-v0 \
--alg ES \
--stop '{"training_iteration": 2}' \
--config '{"stepsize": 0.01}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--alg A3C \
--stop '{"training_iteration": 2}' \
--config '{"use_lstm": false}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env CartPole-v0 \
--alg DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env PongDeterministic-v4 \
--alg DQN \
--stop '{"training_iteration": 2}' \
--config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/train.py \
--env MontezumaRevenge-v0 \
--alg PPO \
--stop '{"training_iteration": 2}' \
--config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "sgd_stepsize": 1e-4, "sgd_batchsize": 64, "timesteps_per_batch": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}, "extra_frameskip": 4}'
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/rllib/test/test_checkpoint_restore.py
docker run --shm-size=10G --memory=10G $DOCKER_SHA \
python /ray/python/ray/tune/tune.py \
--env mnist \
--stop '{"training_iteration": 2}' \
--config '{"script_file_path": "/ray/python/ray/tune/examples/tune_mnist_ray.py", "activation": "relu"}'