mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

* WIP. * Fixes. * LINT. * WIP. * WIP. * Fixes. * Fixes. * Fixes. * Fixes. * WIP. * Fixes. * Test * Fix. * Fixes and LINT. * Fixes and LINT. * LINT.
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
import argparse
|
|
import random
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.examples.models.eager_model import EagerModel
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
parser.add_argument("--stop-reward", type=float, default=150)
|
|
parser.add_argument("--as-test", action="store_true")
|
|
|
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
"""Example of using embedded eager execution in a custom loss.
|
|
|
|
Here `compute_penalty` prints the actions and rewards for debugging, and
|
|
also computes a (dummy) penalty term to add to the loss.
|
|
"""
|
|
|
|
def compute_penalty(actions, rewards):
|
|
assert tf.executing_eagerly()
|
|
penalty = tf.reduce_mean(tf.cast(actions, tf.float32))
|
|
if random.random() > 0.9:
|
|
print("The eagerly computed penalty is", penalty, actions, rewards)
|
|
return penalty
|
|
|
|
logits, _ = model.from_batch(train_batch)
|
|
action_dist = dist_class(logits, model)
|
|
|
|
actions = train_batch[SampleBatch.ACTIONS]
|
|
rewards = train_batch[SampleBatch.REWARDS]
|
|
penalty = tf.py_function(
|
|
compute_penalty, [actions, rewards], Tout=tf.float32)
|
|
|
|
return penalty - tf.reduce_mean(action_dist.logp(actions) * rewards)
|
|
|
|
|
|
# <class 'ray.rllib.policy.tf_policy_template.MyTFPolicy'>
|
|
MyTFPolicy = build_tf_policy(
|
|
name="MyTFPolicy",
|
|
loss_fn=policy_gradient_loss,
|
|
)
|
|
|
|
# <class 'ray.rllib.agents.trainer_template.MyCustomTrainer'>
|
|
MyTrainer = build_trainer(
|
|
name="MyCustomTrainer",
|
|
default_policy=MyTFPolicy,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
ModelCatalog.register_custom_model("eager_model", EagerModel)
|
|
|
|
config = {
|
|
"env": "CartPole-v0",
|
|
"num_workers": 0,
|
|
"model": {
|
|
"custom_model": "eager_model"
|
|
},
|
|
"framework": "tfe",
|
|
}
|
|
stop = {
|
|
"timesteps_total": args.stop_timesteps,
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(MyTrainer, stop=stop, config=config)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|