ray/rllib/examples/custom_fast_model.py

55 lines
1.6 KiB
Python

"""Example of using a custom image env and model.
Both the model and env are trivial (and super-fast), so they are useful
for running perf microbenchmarks.
"""
import argparse
import ray
import ray.tune as tune
from ray.tune import sample_from
from ray.rllib.examples.env.fast_image_env import FastImageEnv
from ray.rllib.examples.models.fast_model import FastModel, TorchFastModel
from ray.rllib.models import ModelCatalog
parser = argparse.ArgumentParser()
parser.add_argument("--num-cpus", type=int, default=2)
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-timesteps", type=int, default=100000)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
ModelCatalog.register_custom_model(
"fast_model", TorchFastModel if args.torch else FastModel)
config = {
"env": FastImageEnv,
"compress_observations": True,
"model": {
"custom_model": "fast_model"
},
"num_gpus": 0,
"num_workers": 2,
"num_envs_per_worker": 10,
"num_data_loader_buffers": 1,
"num_aggregation_workers": 1,
"broadcast_interval": 50,
"rollout_fragment_length": 100,
"train_batch_size": sample_from(
lambda spec: 1000 * max(1, spec.config.num_gpus)),
"fake_sampler": True,
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
}
tune.run("IMPALA", config=config, stop=stop)
ray.shutdown()