ray/python/ray/utils.py

814 lines
29 KiB
Python

import binascii
import errno
import hashlib
import logging
import multiprocessing
import os
import signal
import subprocess
import sys
import tempfile
import threading
import time
import uuid
from inspect import signature
import numpy as np
import psutil
import ray
import ray.gcs_utils
import ray.ray_constants as ray_constants
pwd = None
if sys.platform != "win32":
import pwd
logger = logging.getLogger(__name__)
# Linux can bind child processes' lifetimes to that of their parents via prctl.
# prctl support is detected dynamically once, and assumed thereafter.
linux_prctl = None
# Windows can bind processes' lifetimes to that of kernel-level "job objects".
# We keep a global job object to tie its lifetime to that of our own process.
win32_job = None
win32_AssignProcessToJobObject = None
def get_user_temp_dir():
if sys.platform.startswith("darwin") or sys.platform.startswith("linux"):
# Ideally we wouldn't need this fallback, but keep it for now for
# for compatibility
tempdir = os.path.join(os.sep, "tmp")
else:
tempdir = tempfile.gettempdir()
return tempdir
def get_ray_temp_dir():
return os.path.join(get_user_temp_dir(), "ray")
def _random_string():
id_hash = hashlib.shake_128()
id_hash.update(uuid.uuid4().bytes)
id_bytes = id_hash.digest(ray_constants.ID_SIZE)
assert len(id_bytes) == ray_constants.ID_SIZE
return id_bytes
def format_error_message(exception_message, task_exception=False):
"""Improve the formatting of an exception thrown by a remote function.
This method takes a traceback from an exception and makes it nicer by
removing a few uninformative lines and adding some space to indent the
remaining lines nicely.
Args:
exception_message (str): A message generated by traceback.format_exc().
Returns:
A string of the formatted exception message.
"""
lines = exception_message.split("\n")
if task_exception:
# For errors that occur inside of tasks, remove lines 1 and 2 which are
# always the same, they just contain information about the worker code.
lines = lines[0:1] + lines[3:]
pass
return "\n".join(lines)
def push_error_to_driver(worker, error_type, message, job_id=None):
"""Push an error message to the driver to be printed in the background.
Args:
worker: The worker to use.
error_type (str): The type of the error.
message (str): The message that will be printed in the background
on the driver.
job_id: The ID of the driver to push the error message to. If this
is None, then the message will be pushed to all drivers.
"""
if job_id is None:
job_id = ray.JobID.nil()
assert isinstance(job_id, ray.JobID)
worker.core_worker.push_error(job_id, error_type, message, time.time())
def push_error_to_driver_through_redis(redis_client,
error_type,
message,
job_id=None):
"""Push an error message to the driver to be printed in the background.
Normally the push_error_to_driver function should be used. However, in some
instances, the raylet client is not available, e.g., because the
error happens in Python before the driver or worker has connected to the
backend processes.
Args:
redis_client: The redis client to use.
error_type (str): The type of the error.
message (str): The message that will be printed in the background
on the driver.
job_id: The ID of the driver to push the error message to. If this
is None, then the message will be pushed to all drivers.
"""
if job_id is None:
job_id = ray.JobID.nil()
assert isinstance(job_id, ray.JobID)
# Do everything in Python and through the Python Redis client instead
# of through the raylet.
error_data = ray.gcs_utils.construct_error_message(job_id, error_type,
message, time.time())
pubsub_msg = ray.gcs_utils.PubSubMessage()
pubsub_msg.id = job_id.binary()
pubsub_msg.data = error_data
redis_client.publish("ERROR_INFO:" + job_id.hex(),
pubsub_msg.SerializeToString())
def random_string():
"""Generate a random string to use as an ID.
Note that users may seed numpy, which could cause this function to generate
duplicate IDs. Therefore, we need to seed numpy ourselves, but we can't
interfere with the state of the user's random number generator, so we
extract the state of the random number generator and reset it after we are
done.
TODO(rkn): If we want to later guarantee that these are generated in a
deterministic manner, then we will need to make some changes here.
Returns:
A random byte string of length ray_constants.ID_SIZE.
"""
# Get the state of the numpy random number generator.
numpy_state = np.random.get_state()
# Try to use true randomness.
np.random.seed(None)
# Generate the random ID.
random_id = np.random.bytes(ray_constants.ID_SIZE)
# Reset the state of the numpy random number generator.
np.random.set_state(numpy_state)
return random_id
def decode(byte_str, allow_none=False):
"""Make this unicode in Python 3, otherwise leave it as bytes.
Args:
byte_str: The byte string to decode.
allow_none: If true, then we will allow byte_str to be None in which
case we will return an empty string. TODO(rkn): Remove this flag.
This is only here to simplify upgrading to flatbuffers 1.10.0.
Returns:
A byte string in Python 2 and a unicode string in Python 3.
"""
if byte_str is None and allow_none:
return ""
if not isinstance(byte_str, bytes):
raise ValueError(f"The argument {byte_str} must be a bytes object.")
if sys.version_info >= (3, 0):
return byte_str.decode("ascii")
else:
return byte_str
def ensure_str(s, encoding="utf-8", errors="strict"):
"""Coerce *s* to `str`.
- `str` -> `str`
- `bytes` -> decoded to `str`
"""
if isinstance(s, str):
return s
else:
assert isinstance(s, bytes)
return s.decode(encoding, errors)
def binary_to_object_ref(binary_object_ref):
return ray.ObjectRef(binary_object_ref)
def binary_to_task_id(binary_task_id):
return ray.TaskID(binary_task_id)
def binary_to_hex(identifier):
hex_identifier = binascii.hexlify(identifier)
if sys.version_info >= (3, 0):
hex_identifier = hex_identifier.decode()
return hex_identifier
def hex_to_binary(hex_identifier):
return binascii.unhexlify(hex_identifier)
# TODO(qwang): Remove these hepler functions
# once we separate `WorkerID` from `UniqueID`.
def compute_job_id_from_driver(driver_id):
assert isinstance(driver_id, ray.WorkerID)
return ray.JobID(driver_id.binary()[0:ray.JobID.size()])
def compute_driver_id_from_job(job_id):
assert isinstance(job_id, ray.JobID)
rest_length = ray_constants.ID_SIZE - job_id.size()
driver_id_str = job_id.binary() + (rest_length * b"\xff")
return ray.WorkerID(driver_id_str)
def get_cuda_visible_devices():
"""Get the device IDs in the CUDA_VISIBLE_DEVICES environment variable.
Returns:
devices (List[str]): If CUDA_VISIBLE_DEVICES is set, returns a
list of strings representing the IDs of the visible GPUs.
If it is not set or is set to NoDevFiles, returns empty list.
"""
gpu_ids_str = os.environ.get("CUDA_VISIBLE_DEVICES", None)
if gpu_ids_str is None:
return None
if gpu_ids_str == "":
return []
if gpu_ids_str == "NoDevFiles":
return []
# GPU identifiers are given as strings representing integers or UUIDs.
return list(gpu_ids_str.split(","))
last_set_gpu_ids = None
def set_cuda_visible_devices(gpu_ids):
"""Set the CUDA_VISIBLE_DEVICES environment variable.
Args:
gpu_ids (List[str]): List of strings representing GPU IDs.
"""
global last_set_gpu_ids
if last_set_gpu_ids == gpu_ids:
return # optimization: already set
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in gpu_ids])
last_set_gpu_ids = gpu_ids
def resources_from_resource_arguments(
default_num_cpus, default_num_gpus, default_memory,
default_object_store_memory, default_resources,
default_accelerator_type, runtime_num_cpus, runtime_num_gpus,
runtime_memory, runtime_object_store_memory, runtime_resources,
runtime_accelerator_type):
"""Determine a task's resource requirements.
Args:
default_num_cpus: The default number of CPUs required by this function
or actor method.
default_num_gpus: The default number of GPUs required by this function
or actor method.
default_memory: The default heap memory required by this function
or actor method.
default_object_store_memory: The default object store memory required
by this function or actor method.
default_resources: The default custom resources required by this
function or actor method.
runtime_num_cpus: The number of CPUs requested when the task was
invoked.
runtime_num_gpus: The number of GPUs requested when the task was
invoked.
runtime_memory: The heap memory requested when the task was invoked.
runtime_object_store_memory: The object store memory requested when
the task was invoked.
runtime_resources: The custom resources requested when the task was
invoked.
Returns:
A dictionary of the resource requirements for the task.
"""
if runtime_resources is not None:
resources = runtime_resources.copy()
elif default_resources is not None:
resources = default_resources.copy()
else:
resources = {}
if "CPU" in resources or "GPU" in resources:
raise ValueError("The resources dictionary must not "
"contain the key 'CPU' or 'GPU'")
elif "memory" in resources or "object_store_memory" in resources:
raise ValueError("The resources dictionary must not "
"contain the key 'memory' or 'object_store_memory'")
assert default_num_cpus is not None
resources["CPU"] = (default_num_cpus
if runtime_num_cpus is None else runtime_num_cpus)
if runtime_num_gpus is not None:
resources["GPU"] = runtime_num_gpus
elif default_num_gpus is not None:
resources["GPU"] = default_num_gpus
# Order of arguments matter for short circuiting.
memory = runtime_memory or default_memory
object_store_memory = (runtime_object_store_memory
or default_object_store_memory)
if memory is not None:
resources["memory"] = ray_constants.to_memory_units(
memory, round_up=True)
if object_store_memory is not None:
resources["object_store_memory"] = ray_constants.to_memory_units(
object_store_memory, round_up=True)
if runtime_accelerator_type is not None:
resources[f"{ray_constants.RESOURCE_CONSTRAINT_PREFIX}"
f"{runtime_accelerator_type}"] = 0.001
elif default_accelerator_type is not None:
resources[f"{ray_constants.RESOURCE_CONSTRAINT_PREFIX}"
f"{default_accelerator_type}"] = 0.001
return resources
class Unbuffered(object):
"""There's no "built-in" solution to programatically disabling buffering of
text files. Ray expects stdout/err to be text files, so creating an
unbuffered binary file is unacceptable.
See
https://mail.python.org/pipermail/tutor/2003-November/026645.html.
https://docs.python.org/3/library/functions.html#open
"""
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def writelines(self, datas):
self.stream.writelines(datas)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
def open_log(path, unbuffered=False, **kwargs):
"""
Opens the log file at `path`, with the provided kwargs being given to
`open`.
"""
# Disable buffering, see test_advanced_3.py::test_logging_to_driver
kwargs.setdefault("buffering", 1)
kwargs.setdefault("mode", "a")
kwargs.setdefault("encoding", "utf-8")
stream = open(path, **kwargs)
if unbuffered:
return Unbuffered(stream)
else:
return stream
def get_system_memory():
"""Return the total amount of system memory in bytes.
Returns:
The total amount of system memory in bytes.
"""
# Try to accurately figure out the memory limit if we are in a docker
# container. Note that this file is not specific to Docker and its value is
# often much larger than the actual amount of memory.
docker_limit = None
memory_limit_filename = "/sys/fs/cgroup/memory/memory.limit_in_bytes"
if os.path.exists(memory_limit_filename):
with open(memory_limit_filename, "r") as f:
docker_limit = int(f.read())
# Use psutil if it is available.
psutil_memory_in_bytes = psutil.virtual_memory().total
if docker_limit is not None:
# We take the min because the cgroup limit is very large if we aren't
# in Docker.
return min(docker_limit, psutil_memory_in_bytes)
return psutil_memory_in_bytes
def _get_docker_cpus(
cpu_quota_file_name="/sys/fs/cgroup/cpu/cpu.cfs_quota_us",
cpu_share_file_name="/sys/fs/cgroup/cpu/cpu.cfs_period_us",
cpuset_file_name="/sys/fs/cgroup/cpuset/cpuset.cpus"):
# TODO (Alex): Don't implement this logic oursleves.
# Docker has 2 underyling ways of implementing CPU limits:
# https://docs.docker.com/config/containers/resource_constraints/#configure-the-default-cfs-scheduler
# 1. --cpuset-cpus 2. --cpus or --cpu-quota/--cpu-period (--cpu-shares is a
# soft limit so we don't worry about it). For Ray's purposes, if we use
# docker, the number of vCPUs on a machine is whichever is set (ties broken
# by smaller value).
cpu_quota = None
# See: https://bugs.openjdk.java.net/browse/JDK-8146115
if os.path.exists(cpu_quota_file_name) and os.path.exists(
cpu_quota_file_name):
try:
with open(cpu_quota_file_name, "r") as quota_file, open(
cpu_share_file_name, "r") as period_file:
cpu_quota = float(quota_file.read()) / float(
period_file.read())
except Exception as e:
logger.exception("Unexpected error calculating docker cpu quota.",
e)
if cpu_quota < 0:
cpu_quota = None
cpuset_num = None
if os.path.exists(cpuset_file_name):
try:
with open(cpuset_file_name) as cpuset_file:
ranges_as_string = cpuset_file.read()
ranges = ranges_as_string.split(",")
cpu_ids = []
for num_or_range in ranges:
if "-" in num_or_range:
start, end = num_or_range.split("-")
cpu_ids.extend(list(range(int(start), int(end) + 1)))
else:
cpu_ids.append(int(num_or_range))
cpuset_num = len(cpu_ids)
except Exception as e:
logger.exception("Unexpected error calculating docker cpuset ids.",
e)
if cpu_quota and cpuset_num:
return min(cpu_quota, cpuset_num)
else:
return cpu_quota or cpuset_num
def get_num_cpus():
cpu_count = multiprocessing.cpu_count()
if os.environ.get("RAY_USE_MULTIPROCESSING_CPU_COUNT"):
logger.info(
"Detected RAY_USE_MULTIPROCESSING_CPU_COUNT=1: Using "
"multiprocessing.cpu_count() to detect the number of CPUs. "
"This may be inconsistent when used inside docker. "
"To correctly detect CPUs, unset the env var: "
"`RAY_USE_MULTIPROCESSING_CPU_COUNT`.")
return cpu_count
try:
# Not easy to get cpu count in docker, see:
# https://bugs.python.org/issue36054
docker_count = _get_docker_cpus()
if docker_count is not None and docker_count != cpu_count:
if "RAY_DISABLE_DOCKER_CPU_WARNING" not in os.environ:
logger.warning(
"Detecting docker specified CPUs. In "
"previous versions of Ray, CPU detection in containers "
"was incorrect. Please ensure that Ray has enough CPUs "
"allocated. As a temporary workaround to revert to the "
"prior behavior, set "
"`RAY_USE_MULTIPROCESSING_CPU_COUNT=1` as an env var "
"before starting Ray. Set the env var: "
"`RAY_DISABLE_DOCKER_CPU_WARNING=1` to mute this warning.")
# TODO (Alex): We should probably add support for fractional cpus.
if int(docker_count) != float(docker_count):
logger.warning(
f"Ray currently does not support initializing Ray"
f"with fractional cpus. Your num_cpus will be "
f"truncated from {docker_count} to "
f"{int(docker_count)}.")
docker_count = int(docker_count)
cpu_count = docker_count
except Exception:
# `nproc` and cgroup are linux-only. If docker only works on linux
# (will run in a linux VM on other platforms), so this is fine.
pass
return cpu_count
def get_used_memory():
"""Return the currently used system memory in bytes
Returns:
The total amount of used memory
"""
# Try to accurately figure out the memory usage if we are in a docker
# container.
docker_usage = None
memory_usage_filename = "/sys/fs/cgroup/memory/memory.usage_in_bytes"
if os.path.exists(memory_usage_filename):
with open(memory_usage_filename, "r") as f:
docker_usage = int(f.read())
# Use psutil if it is available.
psutil_memory_in_bytes = psutil.virtual_memory().used
if docker_usage is not None:
# We take the min because the cgroup limit is very large if we aren't
# in Docker.
return min(docker_usage, psutil_memory_in_bytes)
return psutil_memory_in_bytes
def estimate_available_memory():
"""Return the currently available amount of system memory in bytes.
Returns:
The total amount of available memory in bytes. Based on the used
and total memory.
"""
return get_system_memory() - get_used_memory()
def get_shared_memory_bytes():
"""Get the size of the shared memory file system.
Returns:
The size of the shared memory file system in bytes.
"""
# Make sure this is only called on Linux.
assert sys.platform == "linux" or sys.platform == "linux2"
shm_fd = os.open("/dev/shm", os.O_RDONLY)
try:
shm_fs_stats = os.fstatvfs(shm_fd)
# The value shm_fs_stats.f_bsize is the block size and the
# value shm_fs_stats.f_bavail is the number of available
# blocks.
shm_avail = shm_fs_stats.f_bsize * shm_fs_stats.f_bavail
finally:
os.close(shm_fd)
return shm_avail
def check_oversized_pickle(pickled, name, obj_type, worker):
"""Send a warning message if the pickled object is too large.
Args:
pickled: the pickled object.
name: name of the pickled object.
obj_type: type of the pickled object, can be 'function',
'remote function', 'actor', or 'object'.
worker: the worker used to send warning message.
"""
length = len(pickled)
if length <= ray_constants.PICKLE_OBJECT_WARNING_SIZE:
return
warning_message = (
"Warning: The {} {} has size {} when pickled. "
"It will be stored in Redis, which could cause memory issues. "
"This may mean that its definition uses a large array or other object."
).format(obj_type, name, length)
push_error_to_driver(
worker,
ray_constants.PICKLING_LARGE_OBJECT_PUSH_ERROR,
warning_message,
job_id=worker.current_job_id)
def is_main_thread():
return threading.current_thread().getName() == "MainThread"
def detect_fate_sharing_support_win32():
global win32_job, win32_AssignProcessToJobObject
if win32_job is None and sys.platform == "win32":
import ctypes
try:
from ctypes.wintypes import BOOL, DWORD, HANDLE, LPVOID, LPCWSTR
kernel32 = ctypes.WinDLL("kernel32")
kernel32.CreateJobObjectW.argtypes = (LPVOID, LPCWSTR)
kernel32.CreateJobObjectW.restype = HANDLE
sijo_argtypes = (HANDLE, ctypes.c_int, LPVOID, DWORD)
kernel32.SetInformationJobObject.argtypes = sijo_argtypes
kernel32.SetInformationJobObject.restype = BOOL
kernel32.AssignProcessToJobObject.argtypes = (HANDLE, HANDLE)
kernel32.AssignProcessToJobObject.restype = BOOL
kernel32.IsDebuggerPresent.argtypes = ()
kernel32.IsDebuggerPresent.restype = BOOL
except (AttributeError, TypeError, ImportError):
kernel32 = None
job = kernel32.CreateJobObjectW(None, None) if kernel32 else None
job = subprocess.Handle(job) if job else job
if job:
from ctypes.wintypes import DWORD, LARGE_INTEGER, ULARGE_INTEGER
class JOBOBJECT_BASIC_LIMIT_INFORMATION(ctypes.Structure):
_fields_ = [
("PerProcessUserTimeLimit", LARGE_INTEGER),
("PerJobUserTimeLimit", LARGE_INTEGER),
("LimitFlags", DWORD),
("MinimumWorkingSetSize", ctypes.c_size_t),
("MaximumWorkingSetSize", ctypes.c_size_t),
("ActiveProcessLimit", DWORD),
("Affinity", ctypes.c_size_t),
("PriorityClass", DWORD),
("SchedulingClass", DWORD),
]
class IO_COUNTERS(ctypes.Structure):
_fields_ = [
("ReadOperationCount", ULARGE_INTEGER),
("WriteOperationCount", ULARGE_INTEGER),
("OtherOperationCount", ULARGE_INTEGER),
("ReadTransferCount", ULARGE_INTEGER),
("WriteTransferCount", ULARGE_INTEGER),
("OtherTransferCount", ULARGE_INTEGER),
]
class JOBOBJECT_EXTENDED_LIMIT_INFORMATION(ctypes.Structure):
_fields_ = [
("BasicLimitInformation",
JOBOBJECT_BASIC_LIMIT_INFORMATION),
("IoInfo", IO_COUNTERS),
("ProcessMemoryLimit", ctypes.c_size_t),
("JobMemoryLimit", ctypes.c_size_t),
("PeakProcessMemoryUsed", ctypes.c_size_t),
("PeakJobMemoryUsed", ctypes.c_size_t),
]
debug = kernel32.IsDebuggerPresent()
# Defined in <WinNT.h>; also available here:
# https://docs.microsoft.com/en-us/windows/win32/api/jobapi2/nf-jobapi2-setinformationjobobject
JobObjectExtendedLimitInformation = 9
JOB_OBJECT_LIMIT_BREAKAWAY_OK = 0x00000800
JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION = 0x00000400
JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE = 0x00002000
buf = JOBOBJECT_EXTENDED_LIMIT_INFORMATION()
buf.BasicLimitInformation.LimitFlags = (
(0 if debug else JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE)
| JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION
| JOB_OBJECT_LIMIT_BREAKAWAY_OK)
infoclass = JobObjectExtendedLimitInformation
if not kernel32.SetInformationJobObject(
job, infoclass, ctypes.byref(buf), ctypes.sizeof(buf)):
job = None
win32_AssignProcessToJobObject = (kernel32.AssignProcessToJobObject
if kernel32 is not None else False)
win32_job = job if job else False
return bool(win32_job)
def detect_fate_sharing_support_linux():
global linux_prctl
if linux_prctl is None and sys.platform.startswith("linux"):
try:
from ctypes import c_int, c_ulong, CDLL
prctl = CDLL(None).prctl
prctl.restype = c_int
prctl.argtypes = [c_int, c_ulong, c_ulong, c_ulong, c_ulong]
except (AttributeError, TypeError):
prctl = None
linux_prctl = prctl if prctl else False
return bool(linux_prctl)
def detect_fate_sharing_support():
result = None
if sys.platform == "win32":
result = detect_fate_sharing_support_win32()
elif sys.platform.startswith("linux"):
result = detect_fate_sharing_support_linux()
return result
def set_kill_on_parent_death_linux():
"""Ensures this process dies if its parent dies (fate-sharing).
Linux-only. Must be called in preexec_fn (i.e. by the child).
"""
if detect_fate_sharing_support_linux():
import signal
PR_SET_PDEATHSIG = 1
if linux_prctl(PR_SET_PDEATHSIG, signal.SIGKILL, 0, 0, 0) != 0:
import ctypes
raise OSError(ctypes.get_errno(), "prctl(PR_SET_PDEATHSIG) failed")
else:
assert False, "PR_SET_PDEATHSIG used despite being unavailable"
def set_kill_child_on_death_win32(child_proc):
"""Ensures the child process dies if this process dies (fate-sharing).
Windows-only. Must be called by the parent, after spawning the child.
Args:
child_proc: The subprocess.Popen or subprocess.Handle object.
"""
if isinstance(child_proc, subprocess.Popen):
child_proc = child_proc._handle
assert isinstance(child_proc, subprocess.Handle)
if detect_fate_sharing_support_win32():
if not win32_AssignProcessToJobObject(win32_job, int(child_proc)):
import ctypes
raise OSError(ctypes.get_last_error(),
"AssignProcessToJobObject() failed")
else:
assert False, "AssignProcessToJobObject used despite being unavailable"
def set_sigterm_handler(sigterm_handler):
"""Registers a handler for SIGTERM in a platform-compatible manner."""
if sys.platform == "win32":
# Note that these signal handlers only work for console applications.
# TODO(mehrdadn): implement graceful process termination mechanism
# SIGINT is Ctrl+C, SIGBREAK is Ctrl+Break.
signal.signal(signal.SIGBREAK, sigterm_handler)
else:
signal.signal(signal.SIGTERM, sigterm_handler)
def try_make_directory_shared(directory_path):
try:
os.chmod(directory_path, 0o0777)
except OSError as e:
# Silently suppress the PermissionError that is thrown by the chmod.
# This is done because the user attempting to change the permissions
# on a directory may not own it. The chmod is attempted whether the
# directory is new or not to avoid race conditions.
# ray-project/ray/#3591
if e.errno in [errno.EACCES, errno.EPERM]:
pass
else:
raise
def try_to_create_directory(directory_path):
"""Attempt to create a directory that is globally readable/writable.
Args:
directory_path: The path of the directory to create.
"""
directory_path = os.path.expanduser(directory_path)
os.makedirs(directory_path, exist_ok=True)
# Change the log directory permissions so others can use it. This is
# important when multiple people are using the same machine.
try_make_directory_shared(directory_path)
def try_to_symlink(symlink_path, target_path):
"""Attempt to create a symlink.
If the symlink path exists and isn't a symlink, the symlink will not be
created. If a symlink exists in the path, it will be attempted to be
removed and replaced.
Args:
symlink_path: The path at which to create the symlink.
target_path: The path the symlink should point to.
"""
symlink_path = os.path.expanduser(symlink_path)
target_path = os.path.expanduser(target_path)
if os.path.exists(symlink_path):
if os.path.islink(symlink_path):
# Try to remove existing symlink.
try:
os.remove(symlink_path)
except OSError:
return
else:
# There's an existing non-symlink file, don't overwrite it.
return
try:
os.symlink(target_path, symlink_path)
except OSError:
return
def get_user():
if pwd is None:
return ""
try:
return pwd.getpwuid(os.getuid()).pw_name
except Exception:
return ""
def get_function_args(callable):
all_parameters = frozenset(signature(callable).parameters)
return list(all_parameters)