ray/rllib/policy/torch_policy_template.py
Michael Luo 4cbe13cdfd
[RLlib] CQL loss fn fixes, MuJoCo + Pendulum benchmarks, offline-RL example script w/ json file. (#15603)
Co-authored-by: Sven Mika <sven@anyscale.io>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-05-04 19:06:19 +02:00

81 lines
3.7 KiB
Python

import gym
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
from ray.util import log_once
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import TorchPolicy
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import ModelGradients, TensorType, \
TrainerConfigDict
torch, _ = try_import_torch()
@DeveloperAPI
def build_torch_policy(
name: str,
*,
loss_fn: Optional[Callable[[
Policy, ModelV2, Type[TorchDistributionWrapper], SampleBatch
], Union[TensorType, List[TensorType]]]],
get_default_config: Optional[Callable[[], TrainerConfigDict]] = None,
stats_fn: Optional[Callable[[Policy, SampleBatch], Dict[
str, TensorType]]] = None,
postprocess_fn=None,
extra_action_out_fn: Optional[Callable[[
Policy, Dict[str, TensorType], List[TensorType], ModelV2,
TorchDistributionWrapper
], Dict[str, TensorType]]] = None,
extra_grad_process_fn: Optional[Callable[[
Policy, "torch.optim.Optimizer", TensorType
], Dict[str, TensorType]]] = None,
extra_learn_fetches_fn: Optional[Callable[[Policy], Dict[
str, TensorType]]] = None,
optimizer_fn: Optional[Callable[[Policy, TrainerConfigDict],
"torch.optim.Optimizer"]] = None,
validate_spaces: Optional[Callable[
[Policy, gym.Space, gym.Space, TrainerConfigDict], None]] = None,
before_init: Optional[Callable[
[Policy, gym.Space, gym.Space, TrainerConfigDict], None]] = None,
before_loss_init: Optional[Callable[[
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
], None]] = None,
after_init: Optional[Callable[
[Policy, gym.Space, gym.Space, TrainerConfigDict], None]] = None,
_after_loss_init: Optional[Callable[[
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
], None]] = None,
action_sampler_fn: Optional[Callable[[TensorType, List[
TensorType]], Tuple[TensorType, TensorType]]] = None,
action_distribution_fn: Optional[Callable[[
Policy, ModelV2, TensorType, TensorType, TensorType
], Tuple[TensorType, type, List[TensorType]]]] = None,
make_model: Optional[Callable[[
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
], ModelV2]] = None,
make_model_and_action_dist: Optional[Callable[[
Policy, gym.spaces.Space, gym.spaces.Space, TrainerConfigDict
], Tuple[ModelV2, Type[TorchDistributionWrapper]]]] = None,
compute_gradients_fn: Optional[Callable[[Policy, SampleBatch], Tuple[
ModelGradients, dict]]] = None,
apply_gradients_fn: Optional[Callable[
[Policy, "torch.optim.Optimizer"], None]] = None,
mixins: Optional[List[type]] = None,
get_batch_divisibility_req: Optional[Callable[[Policy], int]] = None
) -> Type[TorchPolicy]:
if log_once("deprecation_warning_build_torch_policy"):
deprecation_warning(
old="build_torch_policy",
new="build_policy_class(framework='torch')",
error=False)
kwargs = locals().copy()
# Set to torch and call new function.
kwargs["framework"] = "torch"
return build_policy_class(**kwargs)