mirror of
https://github.com/vale981/ray
synced 2025-03-11 21:56:39 -04:00

* Exploration API (+EpsilonGreedy sub-class). * Exploration API (+EpsilonGreedy sub-class). * Cleanup/LINT. * Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents). * Add `error` option to deprecation_warning(). * WIP. * Bug fix: Get exploration-info for tf framework. Bug fix: Properly deprecate some DQN config keys. * WIP. * LINT. * WIP. * Split PerWorkerEpsilonGreedy out of EpsilonGreedy. Docstrings. * Fix bug in sampler.py in case Policy has self.exploration = None * Update rllib/agents/dqn/dqn.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Update rllib/agents/trainer.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Change requests. * LINT * In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set * Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps). * Update rllib/evaluation/worker_set.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Review fixes. * Fix default value for DQN's exploration spec. * LINT * Fix recursion bug (wrong parent c'tor). * Do not pass timestep to get_exploration_info. * Update tf_policy.py * Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs. * Bug fix tf-action-dist * DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG). * Switch off exploration when getting action probs from off-policy-estimator's policy. * LINT * Fix test_checkpoint_restore.py. * Deprecate all SAC exploration (unused) configs. * Properly use `model.last_output()` everywhere. Instead of `model._last_output`. * WIP. * Take out set_epsilon from multi-agent-env test (not needed, decays anyway). * WIP. * Trigger re-test (flaky checkpoint-restore test). * WIP. * WIP. * Add test case for deterministic action sampling in PPO. * bug fix. * Added deterministic test cases for different Agents. * Fix problem with TupleActions in dynamic-tf-policy. * Separate supported_spaces tests so they can be run separately for easier debugging. * LINT. * Fix autoregressive_action_dist.py test case. * Re-test. * Fix. * Remove duplicate py_test rule from bazel. * LINT. * WIP. * WIP. * SAC fix. * SAC fix. * WIP. * WIP. * WIP. * FIX 2 examples tests. * WIP. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Renamed test file. * WIP. * Add unittest.main. * Make action_dist_class mandatory. * fix * FIX. * WIP. * WIP. * Fix. * Fix. * Fix explorations test case (contextlib cannot find its own nullcontext??). * Force torch to be installed for QMIX. * LINT. * Fix determine_tests_to_run.py. * Fix determine_tests_to_run.py. * WIP * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Rename some stuff. * Rename some stuff. * WIP. * WIP. * Fix SAC. * Fix SAC. * Fix strange tf-error in ray core tests. * Fix strange ray-core tf-error in test_memory_scheduling test case. * Fix test_io.py. * LINT. * Update SAC yaml files' config. Co-authored-by: Eric Liang <ekhliang@gmail.com>
153 lines
6 KiB
Python
153 lines
6 KiB
Python
import numpy as np
|
|
from scipy.stats import norm
|
|
import unittest
|
|
|
|
import ray.rllib.agents.dqn as dqn
|
|
import ray.rllib.agents.ppo as ppo
|
|
import ray.rllib.agents.sac as sac
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check
|
|
from ray.rllib.utils.numpy import one_hot, fc, MIN_LOG_NN_OUTPUT, \
|
|
MAX_LOG_NN_OUTPUT
|
|
|
|
tf = try_import_tf()
|
|
|
|
|
|
def test_log_likelihood(run,
|
|
config,
|
|
prev_a=None,
|
|
continuous=False,
|
|
layer_key=("fc", (0, 4)),
|
|
logp_func=None):
|
|
config = config.copy()
|
|
# Run locally.
|
|
config["num_workers"] = 0
|
|
# Env setup.
|
|
if continuous:
|
|
env = "Pendulum-v0"
|
|
obs_batch = preprocessed_obs_batch = np.array([[0.0, 0.1, -0.1]])
|
|
else:
|
|
env = "FrozenLake-v0"
|
|
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
|
|
obs_batch = np.array([0])
|
|
preprocessed_obs_batch = one_hot(obs_batch, depth=16)
|
|
|
|
# Use Soft-Q for DQNs.
|
|
if run is dqn.DQNTrainer:
|
|
config["exploration_config"] = {"type": "SoftQ", "temperature": 0.5}
|
|
|
|
prev_r = None if prev_a is None else np.array(0.0)
|
|
|
|
# Test against all frameworks.
|
|
for fw in ["tf", "eager", "torch"]:
|
|
if run in [dqn.DQNTrainer, sac.SACTrainer] and fw == "torch":
|
|
continue
|
|
print("Testing {} with framework={}".format(run, fw))
|
|
config["eager"] = True if fw == "eager" else False
|
|
config["use_pytorch"] = True if fw == "torch" else False
|
|
|
|
trainer = run(config=config, env=env)
|
|
policy = trainer.get_policy()
|
|
vars = policy.get_weights()
|
|
# Sample n actions, then roughly check their logp against their
|
|
# counts.
|
|
num_actions = 500
|
|
actions = []
|
|
for _ in range(num_actions):
|
|
# Single action from single obs.
|
|
actions.append(
|
|
trainer.compute_action(
|
|
obs_batch[0],
|
|
prev_action=prev_a,
|
|
prev_reward=prev_r,
|
|
explore=True))
|
|
|
|
# Test 50 actions for their log-likelihoods vs expected values.
|
|
if continuous:
|
|
for idx in range(50):
|
|
a = actions[idx]
|
|
if fw == "tf" or fw == "eager":
|
|
if isinstance(vars, list):
|
|
expected_mean_logstd = fc(
|
|
fc(obs_batch, vars[layer_key[1][0]]),
|
|
vars[layer_key[1][1]])
|
|
else:
|
|
expected_mean_logstd = fc(
|
|
fc(
|
|
obs_batch,
|
|
vars["default_policy/{}_1/kernel".format(
|
|
layer_key[0])]),
|
|
vars["default_policy/{}_out/kernel".format(
|
|
layer_key[0])])
|
|
else:
|
|
expected_mean_logstd = fc(
|
|
fc(obs_batch,
|
|
vars["_hidden_layers.0._model.0.weight"]),
|
|
vars["_logits._model.0.weight"])
|
|
mean, log_std = np.split(expected_mean_logstd, 2, axis=-1)
|
|
if logp_func is None:
|
|
expected_logp = np.log(norm.pdf(a, mean, np.exp(log_std)))
|
|
else:
|
|
expected_logp = logp_func(mean, log_std, a)
|
|
logp = policy.compute_log_likelihoods(
|
|
np.array([a]),
|
|
preprocessed_obs_batch,
|
|
prev_action_batch=np.array([prev_a]),
|
|
prev_reward_batch=np.array([prev_r]))
|
|
check(logp, expected_logp[0], rtol=0.2)
|
|
# Test all available actions for their logp values.
|
|
else:
|
|
for a in [0, 1, 2, 3]:
|
|
count = actions.count(a)
|
|
expected_logp = np.log(count / num_actions)
|
|
logp = policy.compute_log_likelihoods(
|
|
np.array([a]),
|
|
preprocessed_obs_batch,
|
|
prev_action_batch=np.array([prev_a]),
|
|
prev_reward_batch=np.array([prev_r]))
|
|
check(logp, expected_logp, rtol=0.3)
|
|
|
|
|
|
class TestComputeLogLikelihood(unittest.TestCase):
|
|
def test_dqn(self):
|
|
"""Tests, whether DQN correctly computes logp in soft-q mode."""
|
|
test_log_likelihood(dqn.DQNTrainer, dqn.DEFAULT_CONFIG)
|
|
|
|
def test_ppo_cont(self):
|
|
"""Tests PPO's (cont. actions) compute_log_likelihoods method."""
|
|
config = ppo.DEFAULT_CONFIG.copy()
|
|
config["model"]["fcnet_hiddens"] = [10]
|
|
config["model"]["fcnet_activation"] = "linear"
|
|
prev_a = np.array([0.0])
|
|
test_log_likelihood(ppo.PPOTrainer, config, prev_a, continuous=True)
|
|
|
|
def test_ppo_discr(self):
|
|
"""Tests PPO's (discr. actions) compute_log_likelihoods method."""
|
|
prev_a = np.array(0)
|
|
test_log_likelihood(ppo.PPOTrainer, ppo.DEFAULT_CONFIG, prev_a)
|
|
|
|
def test_sac(self):
|
|
"""Tests SAC's compute_log_likelihoods method."""
|
|
config = sac.DEFAULT_CONFIG.copy()
|
|
config["policy_model"]["hidden_layer_sizes"] = [10]
|
|
config["policy_model"]["hidden_activation"] = "linear"
|
|
prev_a = np.array([0.0])
|
|
|
|
def logp_func(means, log_stds, values, low=-1.0, high=1.0):
|
|
stds = np.exp(
|
|
np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
|
|
unsquashed_values = np.arctanh((values - low) /
|
|
(high - low) * 2.0 - 1.0)
|
|
log_prob_unsquashed = \
|
|
np.sum(np.log(norm.pdf(unsquashed_values, means, stds)), -1)
|
|
return log_prob_unsquashed - \
|
|
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
|
|
axis=-1)
|
|
|
|
test_log_likelihood(
|
|
sac.SACTrainer,
|
|
config,
|
|
prev_a,
|
|
continuous=True,
|
|
layer_key=("sequential/action", (0, 2)),
|
|
logp_func=logp_func)
|