ray/doc/examples/datasets_train/datasets_train.py
Amog Kamsetty 57db4640ca
[Train] [Tune] Refactor MLflow (#20802)
Pulls out Tune's MLflow logging logic to a shared MLflow util.
Adds an MLflow logger callback to Ray Train

Closes #20642
2021-12-21 17:17:52 -08:00

696 lines
23 KiB
Python

# TODO(matt): Reformat script.
"""
Big Data Training
=================
"""
###############################################################################
# train
###############################################################################
import argparse
import collections
import os
import sys
import time
from typing import Tuple
import boto3
import mlflow
import pandas as pd
import ray
import torch
import torch.nn as nn
import torch.optim as optim
from ray import train
from ray.data.aggregate import Mean, Std
from ray.train import Trainer
from ray.train.callbacks.logging import MLflowLoggerCallback
from ray.train.callbacks import TBXLoggerCallback
from torch.nn.parallel import DistributedDataParallel
def make_and_upload_dataset(dir_path):
import random
import os
import pandas as pd
import sklearn.datasets
NUM_EXAMPLES = 2_000_000
NUM_FEATURES = 20
PARQUET_FILE_CHUNK_SIZE = 50_000
NUM_FILES = NUM_EXAMPLES // PARQUET_FILE_CHUNK_SIZE
def create_data_chunk(n, d, seed, include_label=False):
X, y = sklearn.datasets.make_classification(
n_samples=n,
n_features=d,
n_informative=10,
n_redundant=2,
n_repeated=0,
n_classes=2,
n_clusters_per_class=3,
weights=None,
flip_y=0.03,
class_sep=0.8,
hypercube=True,
shift=0.0,
scale=1.0,
shuffle=False,
random_state=seed)
# turn into dataframe with column names
col_names = ["feature_%0d" % i for i in range(1, d + 1, 1)]
df = pd.DataFrame(X)
df.columns = col_names
# add some bogus categorical data columns
options = ["apple", "banana", "orange"]
df["fruit"] = df.feature_1.map(
lambda x: random.choice(options)
) # bogus, but nice to test categoricals
# add some nullable columns
options = [None, 1, 2]
df["nullable_feature"] = df.feature_1.map(
lambda x: random.choice(options)
) # bogus, but nice to test categoricals
# add label column
if include_label:
df["label"] = y
return df
# create data files
print("Creating synthetic dataset...")
data_path = os.path.join(dir_path, "data")
os.makedirs(data_path, exist_ok=True)
for i in range(NUM_FILES):
path = os.path.join(data_path, f"data_{i:05d}.parquet.snappy")
if not os.path.exists(path):
tmp_df = create_data_chunk(
n=PARQUET_FILE_CHUNK_SIZE,
d=NUM_FEATURES,
seed=i,
include_label=True)
tmp_df.to_parquet(path, compression="snappy", index=False)
print(f"Wrote {path} to disk...")
# todo: at large enough scale we might want to upload the rest after
# first N files rather than write to disk
# to simulate a user with local copy of subset of data
print("Creating synthetic inference dataset...")
inference_path = os.path.join(dir_path, "inference")
os.makedirs(inference_path, exist_ok=True)
for i in range(NUM_FILES):
path = os.path.join(inference_path, f"data_{i:05d}.parquet.snappy")
if not os.path.exists(path):
tmp_df = create_data_chunk(
n=PARQUET_FILE_CHUNK_SIZE,
d=NUM_FEATURES,
seed=i,
include_label=False)
tmp_df.to_parquet(path, compression="snappy", index=False)
print(f"Wrote {path} to disk...")
# todo: at large enough scale we might want to upload the rest after
# first N files rather than write to disk
# to simulate a user with local copy of subset of data
# os.system("aws s3 sync ./data s3://cuj-big-data/data")
# os.system("aws s3 sync ./inference s3://cuj-big-data/inference")
def read_dataset(path: str) -> ray.data.Dataset:
print(f"reading data from {path}")
return ray.data.read_parquet(path, _spread_resource_prefix="node:") \
.random_shuffle(_spread_resource_prefix="node:")
class DataPreprocessor:
"""A Datasets-based preprocessor that fits scalers/encoders to the training
dataset and transforms the training, testing, and inference datasets using
those fitted scalers/encoders.
"""
def __init__(self):
# List of present fruits, used for one-hot encoding of fruit column.
self.fruits = None
# Mean and stddev stats used for standard scaling of the feature
# columns.
self.standard_stats = None
def preprocess_train_data(self, ds: ray.data.Dataset
) -> Tuple[ray.data.Dataset, ray.data.Dataset]:
print("\n\nPreprocessing training dataset.\n")
return self._preprocess(ds, False)
def preprocess_inference_data(self,
df: ray.data.Dataset) -> ray.data.Dataset:
print("\n\nPreprocessing inference dataset.\n")
return self._preprocess(df, True)[0]
def _preprocess(self, ds: ray.data.Dataset, inferencing: bool
) -> Tuple[ray.data.Dataset, ray.data.Dataset]:
print(
"\nStep 1: Dropping nulls, creating new_col, updating feature_1\n")
def batch_transformer(df: pd.DataFrame):
# Disable chained assignment warning.
pd.options.mode.chained_assignment = None
# Drop nulls.
df = df.dropna(subset=["nullable_feature"])
# Add new column.
df["new_col"] = (
df["feature_1"] - 2 * df["feature_2"] + df["feature_3"]) / 3.
# Transform column.
df["feature_1"] = 2. * df["feature_1"] + 0.1
return df
ds = ds.map_batches(batch_transformer, batch_format="pandas")
print("\nStep 2: Precalculating fruit-grouped mean for new column and "
"for one-hot encoding (latter only uses fruit groups)\n")
agg_ds = ds.groupby("fruit").mean("feature_1")
fruit_means = {
r["fruit"]: r["mean(feature_1)"]
for r in agg_ds.take_all()
}
print("\nStep 3: create mean_by_fruit as mean of feature_1 groupby "
"fruit; one-hot encode fruit column\n")
if inferencing:
assert self.fruits is not None
else:
assert self.fruits is None
self.fruits = list(fruit_means.keys())
fruit_one_hots = {
fruit: collections.defaultdict(int, fruit=1)
for fruit in self.fruits
}
def batch_transformer(df: pd.DataFrame):
# Add column containing the feature_1-mean of the fruit groups.
df["mean_by_fruit"] = df["fruit"].map(fruit_means)
# One-hot encode the fruit column.
for fruit, one_hot in fruit_one_hots.items():
df[f"fruit_{fruit}"] = df["fruit"].map(one_hot)
# Drop the fruit column, which is no longer needed.
df.drop(columns="fruit", inplace=True)
return df
ds = ds.map_batches(batch_transformer, batch_format="pandas")
if inferencing:
print("\nStep 4: Standardize inference dataset\n")
assert self.standard_stats is not None
else:
assert self.standard_stats is None
print("\nStep 4a: Split training dataset into train-test split\n")
# Split into train/test datasets.
split_index = int(0.9 * ds.count())
# Split into 90% training set, 10% test set.
train_ds, test_ds = ds.split_at_indices([split_index])
print("\nStep 4b: Precalculate training dataset stats for "
"standard scaling\n")
# Calculate stats needed for standard scaling feature columns.
feature_columns = [
col for col in train_ds.schema().names if col != "label"
]
standard_aggs = [
agg(on=col) for col in feature_columns for agg in (Mean, Std)
]
self.standard_stats = train_ds.aggregate(*standard_aggs)
print("\nStep 4c: Standardize training dataset\n")
# Standard scaling of feature columns.
standard_stats = self.standard_stats
def batch_standard_scaler(df: pd.DataFrame):
def column_standard_scaler(s: pd.Series):
if s.name == "label":
# Don't scale the label column.
return s
s_mean = standard_stats[f"mean({s.name})"]
s_std = standard_stats[f"std({s.name})"]
return (s - s_mean) / s_std
return df.transform(column_standard_scaler)
if inferencing:
# Apply standard scaling to inference dataset.
inference_ds = ds.map_batches(
batch_standard_scaler, batch_format="pandas")
return inference_ds, None
else:
# Apply standard scaling to both training dataset and test dataset.
train_ds = train_ds.map_batches(
batch_standard_scaler, batch_format="pandas")
test_ds = test_ds.map_batches(
batch_standard_scaler, batch_format="pandas")
return train_ds, test_ds
def inference(dataset, model_cls: type, batch_size: int, result_path: str,
use_gpu: bool):
print("inferencing...")
num_gpus = 1 if use_gpu else 0
dataset \
.map_batches(
model_cls,
compute="actors",
batch_size=batch_size,
num_gpus=num_gpus,
num_cpus=0) \
.write_parquet(result_path)
"""
TODO: Define neural network code in pytorch
P0:
1. can take arguments to change size of net arbitrarily so we can stress test
against distributed training on cluster
2. has a network (nn.module?), optimizer, and loss function for binary
classification
3. has some semblence of regularization (ie: via dropout) so that this
artificially gigantic net doesn"t just overfit horrendously
4. works well with pytorch dataset we"ll create from Ray data
.to_torch_dataset()
P1:
1. also tracks AUC for training, testing sets and records to tensorboard to
"""
class Net(nn.Module):
def __init__(self, n_layers, n_features, num_hidden, dropout_every,
drop_prob):
super().__init__()
self.n_layers = n_layers
self.dropout_every = dropout_every
self.drop_prob = drop_prob
self.fc_input = nn.Linear(n_features, num_hidden)
self.relu_input = nn.ReLU()
for i in range(self.n_layers):
layer = nn.Linear(num_hidden, num_hidden)
relu = nn.ReLU()
dropout = nn.Dropout(p=self.drop_prob)
setattr(self, f"fc_{i}", layer)
setattr(self, f"relu_{i}", relu)
if i % self.dropout_every == 0:
# only apply every few layers
setattr(self, f"drop_{i}", dropout)
self.add_module(f"drop_{i}", dropout)
self.add_module(f"fc_{i}", layer)
self.fc_output = nn.Linear(num_hidden, 1)
def forward(self, x):
x = self.fc_input(x)
x = self.relu_input(x)
for i in range(self.n_layers):
x = getattr(self, f"fc_{i}")(x)
x = getattr(self, f"relu_{i}")(x)
if i % self.dropout_every == 0:
x = getattr(self, f"drop_{i}")(x)
x = self.fc_output(x)
return x
def train_epoch(dataset, model, device, criterion, optimizer):
num_correct = 0
num_total = 0
running_loss = 0.0
for i, (inputs, labels) in enumerate(dataset):
inputs = inputs.to(device)
labels = labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = model(inputs.float())
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
# how are we doing?
predictions = (torch.sigmoid(outputs) > 0.5).int()
num_correct += (predictions == labels).sum().item()
num_total += len(outputs)
# Save loss to plot
running_loss += loss.item()
if i % 100 == 0:
print(f"training batch [{i}] loss: {loss.item()}")
return (running_loss, num_correct, num_total)
def test_epoch(dataset, model, device, criterion):
num_correct = 0
num_total = 0
running_loss = 0.0
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataset):
inputs = inputs.to(device)
labels = labels.to(device)
# Forward + backward + optimize
outputs = model(inputs.float())
loss = criterion(outputs, labels.float())
# how are we doing?
predictions = (torch.sigmoid(outputs) > 0.5).int()
num_correct += (predictions == labels).sum().item()
num_total += len(outputs)
# Save loss to plot
running_loss += loss.item()
if i % 100 == 0:
print(f"testing batch [{i}] loss: {loss.item()}")
return (running_loss, num_correct, num_total)
def train_func(config):
use_gpu = config["use_gpu"]
num_epochs = config["num_epochs"]
batch_size = config["batch_size"]
num_layers = config["num_layers"]
num_hidden = config["num_hidden"]
dropout_every = config["dropout_every"]
dropout_prob = config["dropout_prob"]
num_features = config["num_features"]
print("Defining model, loss, and optimizer...")
# Setup device.
device = torch.device(f"cuda:{train.local_rank()}"
if use_gpu and torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
# Setup data.
train_dataset_pipeline = train.get_dataset_shard("train_dataset")
train_dataset_epoch_iterator = train_dataset_pipeline.iter_epochs()
test_dataset = train.get_dataset_shard("test_dataset")
test_torch_dataset = test_dataset.to_torch(
label_column="label", batch_size=batch_size)
net = Net(
n_layers=num_layers,
n_features=num_features,
num_hidden=num_hidden,
dropout_every=dropout_every,
drop_prob=dropout_prob,
).to(device)
print(net.parameters)
net = train.torch.prepare_model(net)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), weight_decay=0.0001)
print("Starting training...")
for epoch in range(num_epochs):
train_dataset = next(train_dataset_epoch_iterator)
train_torch_dataset = train_dataset.to_torch(
label_column="label", batch_size=batch_size)
train_running_loss, train_num_correct, train_num_total = train_epoch(
train_torch_dataset, net, device, criterion, optimizer)
train_acc = train_num_correct / train_num_total
print(f"epoch [{epoch + 1}]: training accuracy: "
f"{train_num_correct} / {train_num_total} = {train_acc:.4f}")
test_running_loss, test_num_correct, test_num_total = test_epoch(
test_torch_dataset, net, device, criterion)
test_acc = test_num_correct / test_num_total
print(f"epoch [{epoch + 1}]: testing accuracy: "
f"{test_num_correct} / {test_num_total} = {test_acc:.4f}")
# Record and log stats.
train.report(
train_acc=train_acc,
train_loss=train_running_loss,
test_acc=test_acc,
test_loss=test_running_loss)
# Checkpoint model.
module = (net.module
if isinstance(net, DistributedDataParallel) else net)
train.save_checkpoint(model_state_dict=module.state_dict())
if train.world_rank() == 0:
return module.cpu()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dir-path",
default=".",
type=str,
help="Path to read and write data from")
parser.add_argument(
"--use-s3",
action="store_true",
default=False,
help="Use data from s3 for testing.")
parser.add_argument(
"--smoke-test",
action="store_true",
default=False,
help="Finish quickly for testing.")
parser.add_argument(
"--address",
required=False,
type=str,
help="The address to use for Ray. "
"`auto` if running through `ray submit.")
parser.add_argument(
"--num-workers",
default=1,
type=int,
help="The number of Ray workers to use for distributed training")
parser.add_argument(
"--large-dataset",
action="store_true",
default=False,
help="Use 500GB dataset")
parser.add_argument(
"--use-gpu",
action="store_true",
default=False,
help="Use GPU for training.")
parser.add_argument(
"--mlflow-register-model",
action="store_true",
help="Whether to use mlflow model registry. If set, a local MLflow "
"tracking server is expected to have already been started.")
args = parser.parse_args()
smoke_test = args.smoke_test
address = args.address
num_workers = args.num_workers
use_gpu = args.use_gpu
use_s3 = args.use_s3
dir_path = args.dir_path
large_dataset = args.large_dataset
if large_dataset:
assert use_s3, "--large-dataset requires --use-s3 to be set."
start_time = time.time()
ray.init(address=address)
make_and_upload_dataset(dir_path)
# Setup MLflow.
# By default, all metrics & artifacts for each run will be saved to disk
# in ./mlruns directory. Uncomment the below lines if you want to change
# the URI for the tracking uri.
# TODO: Use S3 backed tracking server for golden notebook.
if args.mlflow_register_model:
# MLflow model registry does not work with a local file system backend.
# Have to start a mlflow tracking server on localhost
mlflow.set_tracking_uri("http://127.0.0.1:5000")
# Set the experiment. This will create the experiment if not already
# exists.
mlflow.set_experiment("cuj-big-data-training")
if use_s3:
# Check if s3 data is populated.
BUCKET_NAME = "cuj-big-data"
FOLDER_NAME = "data/"
s3_resource = boto3.resource("s3")
bucket = s3_resource.Bucket(BUCKET_NAME)
count = bucket.objects.filter(Prefix=FOLDER_NAME)
if len(list(count)) == 0:
print("please run `python make_and_upload_dataset.py` first")
sys.exit(1)
data_path = ("s3://cuj-big-data/big-data/"
if large_dataset else "s3://cuj-big-data/data/")
inference_path = "s3://cuj-big-data/inference/"
inference_output_path = "s3://cuj-big-data/output/"
else:
data_path = os.path.join(dir_path, "data")
inference_path = os.path.join(dir_path, "inference")
inference_output_path = "/tmp"
if len(os.listdir(data_path)) <= 1 or len(
os.listdir(inference_path)) <= 1:
print("please run `python make_and_upload_dataset.py` first")
sys.exit(1)
if smoke_test:
# Only read a single file.
data_path = os.path.join(data_path, "data_00000.parquet.snappy")
inference_path = os.path.join(inference_path,
"data_00000.parquet.snappy")
preprocessor = DataPreprocessor()
train_dataset, test_dataset = preprocessor.preprocess_train_data(
read_dataset(data_path))
num_columns = len(train_dataset.schema().names)
# remove label column and internal Arrow column.
num_features = num_columns - 2
NUM_EPOCHS = 2
BATCH_SIZE = 512
NUM_HIDDEN = 50 # 200
NUM_LAYERS = 3 # 15
DROPOUT_EVERY = 5
DROPOUT_PROB = 0.2
# Random global shuffle
train_dataset_pipeline = train_dataset.repeat() \
.random_shuffle_each_window(_spread_resource_prefix="node:")
del train_dataset
datasets = {
"train_dataset": train_dataset_pipeline,
"test_dataset": test_dataset
}
config = {
"use_gpu": use_gpu,
"num_epochs": NUM_EPOCHS,
"batch_size": BATCH_SIZE,
"num_hidden": NUM_HIDDEN,
"num_layers": NUM_LAYERS,
"dropout_every": DROPOUT_EVERY,
"dropout_prob": DROPOUT_PROB,
"num_features": num_features
}
# Create 2 callbacks: one for Tensorboard Logging and one for MLflow
# logging. Pass these into Trainer, and all results that are
# reported by ``train.report()`` will be logged to these 2 places.
# TODO: TBXLoggerCallback should create nonexistent logdir
# and should also create 1 directory per file.
tbx_logdir = "./runs"
os.makedirs(tbx_logdir, exist_ok=True)
callbacks = [
TBXLoggerCallback(logdir=tbx_logdir),
MLflowLoggerCallback(
experiment_name="cuj-big-data-training", save_artifact=True)
]
# Remove CPU resource so Datasets can be scheduled.
resources_per_worker = {"CPU": 0, "GPU": 1} if use_gpu else None
trainer = Trainer(
backend="torch",
num_workers=num_workers,
use_gpu=use_gpu,
resources_per_worker=resources_per_worker)
trainer.start()
results = trainer.run(
train_func=train_func,
config=config,
callbacks=callbacks,
dataset=datasets)
model = results[0]
trainer.shutdown()
if args.mlflow_register_model:
mlflow.pytorch.log_model(
model, artifact_path="models", registered_model_name="torch_model")
# Get the latest model from mlflow model registry.
client = mlflow.tracking.MlflowClient()
registered_model_name = "torch_model"
# Get the info for the latest model.
# By default, registered models are in stage "None".
latest_model_info = client.get_latest_versions(
registered_model_name, stages=["None"])[0]
latest_version = latest_model_info.version
def load_model_func():
model_uri = f"models:/torch_model/{latest_version}"
return mlflow.pytorch.load_model(model_uri)
else:
state_dict = model.state_dict()
def load_model_func():
num_layers = config["num_layers"]
num_hidden = config["num_hidden"]
dropout_every = config["dropout_every"]
dropout_prob = config["dropout_prob"]
num_features = config["num_features"]
model = Net(
n_layers=num_layers,
n_features=num_features,
num_hidden=num_hidden,
dropout_every=dropout_every,
drop_prob=dropout_prob)
model.load_state_dict(state_dict)
return model
class BatchInferModel:
def __init__(self, load_model_func):
self.device = torch.device("cuda:0"
if torch.cuda.is_available() else "cpu")
self.model = load_model_func().to(self.device)
def __call__(self, batch) -> "pd.DataFrame":
tensor = torch.FloatTensor(batch.to_pandas().values).to(
self.device)
return pd.DataFrame(self.model(tensor).cpu().detach().numpy())
inference_dataset = preprocessor.preprocess_inference_data(
read_dataset(inference_path))
inference(inference_dataset, BatchInferModel(load_model_func), 100,
inference_output_path, use_gpu)
end_time = time.time()
total_time = end_time - start_time
print(f"Job finished in {total_time} seconds.")