ray/rllib/examples/custom_rnn_model.py
Sven Mika 57544b1ff9
[RLlib] Examples folder restructuring (Model examples; final part). (#8278)
- This PR completes any previously missing PyTorch Model counterparts to TFModels in examples/models.
- It also makes sure, all example scripts in the rllib/examples folder are tested for both frameworks and learn the given task (this is often currently not checked) using a --as-test flag in connection with a --stop-reward.
2020-05-12 08:23:10 +02:00

62 lines
2 KiB
Python

"""Example of using a custom RNN keras model."""
import argparse
import ray
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
from ray.rllib.examples.models.rnn_model import RNNModel, TorchRNNModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-reward", type=float, default=90)
parser.add_argument("--stop-iters", type=int, default=100)
parser.add_argument("--stop-timesteps", type=int, default=100000)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
ModelCatalog.register_custom_model(
"rnn", TorchRNNModel if args.torch else RNNModel)
register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv())
config = {
"env": args.env,
"env_config": {
"repeat_delay": 2,
},
"gamma": 0.9,
"num_workers": 0,
"num_envs_per_worker": 20,
"entropy_coeff": 0.001,
"num_sgd_iter": 5,
"vf_loss_coeff": 1e-5,
"model": {
"custom_model": "rnn",
"max_seq_len": 20,
},
"use_pytorch": args.torch,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()