mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
186 lines
5.7 KiB
Python
186 lines
5.7 KiB
Python
import gym
|
|
import numpy as np
|
|
import unittest
|
|
|
|
from ray.rllib.connectors.agent.clip_reward import ClipRewardAgentConnector
|
|
from ray.rllib.connectors.agent.env_to_agent import EnvToAgentDataConnector
|
|
from ray.rllib.connectors.agent.lambdas import FlattenDataAgentConnector
|
|
from ray.rllib.connectors.agent.obs_preproc import ObsPreprocessorConnector
|
|
from ray.rllib.connectors.agent.pipeline import AgentConnectorPipeline
|
|
from ray.rllib.connectors.connector import (
|
|
ConnectorContext,
|
|
get_connector,
|
|
)
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.view_requirement import ViewRequirement
|
|
from ray.rllib.utils.typing import (
|
|
AgentConnectorDataType,
|
|
)
|
|
|
|
|
|
class TestAgentConnector(unittest.TestCase):
|
|
def test_connector_pipeline(self):
|
|
ctx = ConnectorContext()
|
|
connectors = [ClipRewardAgentConnector(ctx, False, 1.0)]
|
|
pipeline = AgentConnectorPipeline(ctx, connectors)
|
|
name, params = pipeline.to_config()
|
|
restored = get_connector(ctx, name, params)
|
|
self.assertTrue(isinstance(restored, AgentConnectorPipeline))
|
|
self.assertTrue(isinstance(restored.connectors[0], ClipRewardAgentConnector))
|
|
|
|
def test_env_to_per_agent_data_connector(self):
|
|
vrs = {
|
|
"infos": ViewRequirement(
|
|
"infos",
|
|
used_for_training=True,
|
|
used_for_compute_actions=False,
|
|
)
|
|
}
|
|
ctx = ConnectorContext(view_requirements=vrs)
|
|
|
|
c = EnvToAgentDataConnector(ctx)
|
|
|
|
name, params = c.to_config()
|
|
restored = get_connector(ctx, name, params)
|
|
self.assertTrue(isinstance(restored, EnvToAgentDataConnector))
|
|
|
|
d = AgentConnectorDataType(
|
|
0,
|
|
None,
|
|
[
|
|
# obs
|
|
{1: [8, 8], 2: [9, 9]},
|
|
# rewards
|
|
{
|
|
1: 8.8,
|
|
2: 9.9,
|
|
},
|
|
# dones
|
|
{
|
|
1: False,
|
|
2: False,
|
|
},
|
|
# infos
|
|
{
|
|
1: {"random": "info"},
|
|
2: {},
|
|
},
|
|
# training_episode_info
|
|
{
|
|
1: {SampleBatch.DONES: True},
|
|
},
|
|
],
|
|
)
|
|
per_agent = c(d)
|
|
|
|
self.assertEqual(len(per_agent), 2)
|
|
|
|
batch1 = per_agent[0].data
|
|
self.assertEqual(batch1[SampleBatch.NEXT_OBS], [8, 8])
|
|
self.assertTrue(batch1[SampleBatch.DONES]) # from training_episode_info
|
|
self.assertTrue(SampleBatch.INFOS in batch1)
|
|
self.assertEqual(batch1[SampleBatch.INFOS]["random"], "info")
|
|
|
|
batch2 = per_agent[1].data
|
|
self.assertEqual(batch2[SampleBatch.NEXT_OBS], [9, 9])
|
|
self.assertFalse(batch2[SampleBatch.DONES])
|
|
|
|
def test_obs_preprocessor_connector(self):
|
|
obs_space = gym.spaces.Dict(
|
|
{
|
|
"a": gym.spaces.Box(low=0, high=1, shape=(1,)),
|
|
"b": gym.spaces.Tuple(
|
|
[gym.spaces.Discrete(2), gym.spaces.MultiDiscrete(nvec=[2, 3])]
|
|
),
|
|
}
|
|
)
|
|
ctx = ConnectorContext(config={}, observation_space=obs_space)
|
|
|
|
c = ObsPreprocessorConnector(ctx)
|
|
name, params = c.to_config()
|
|
|
|
restored = get_connector(ctx, name, params)
|
|
self.assertTrue(isinstance(restored, ObsPreprocessorConnector))
|
|
|
|
obs = obs_space.sample()
|
|
# Fake deterministic data.
|
|
obs["a"][0] = 0.5
|
|
obs["b"] = (1, np.array([0, 2]))
|
|
|
|
d = AgentConnectorDataType(
|
|
0,
|
|
1,
|
|
{
|
|
SampleBatch.OBS: obs,
|
|
},
|
|
)
|
|
preprocessed = c(d)
|
|
|
|
# obs is completely flattened.
|
|
self.assertTrue(
|
|
(preprocessed[0].data[SampleBatch.OBS] == [0.5, 0, 1, 1, 0, 0, 0, 1]).all()
|
|
)
|
|
|
|
def test_clip_reward_connector(self):
|
|
ctx = ConnectorContext()
|
|
|
|
c = ClipRewardAgentConnector(ctx, limit=2.0)
|
|
name, params = c.to_config()
|
|
|
|
self.assertEqual(name, "ClipRewardAgentConnector")
|
|
self.assertAlmostEqual(params["limit"], 2.0)
|
|
|
|
restored = get_connector(ctx, name, params)
|
|
self.assertTrue(isinstance(restored, ClipRewardAgentConnector))
|
|
|
|
d = AgentConnectorDataType(
|
|
0,
|
|
1,
|
|
{
|
|
SampleBatch.REWARDS: 5.8,
|
|
},
|
|
)
|
|
clipped = restored(ac_data=d)
|
|
|
|
self.assertEqual(len(clipped), 1)
|
|
self.assertEqual(clipped[0].data[SampleBatch.REWARDS], 2.0)
|
|
|
|
def test_flatten_data_connector(self):
|
|
ctx = ConnectorContext()
|
|
|
|
c = FlattenDataAgentConnector(ctx)
|
|
|
|
name, params = c.to_config()
|
|
restored = get_connector(ctx, name, params)
|
|
self.assertTrue(isinstance(restored, FlattenDataAgentConnector))
|
|
|
|
d = AgentConnectorDataType(
|
|
0,
|
|
1,
|
|
{
|
|
SampleBatch.NEXT_OBS: {
|
|
"sensor1": [[1, 1], [2, 2]],
|
|
"sensor2": 8.8,
|
|
},
|
|
SampleBatch.REWARDS: 5.8,
|
|
SampleBatch.ACTIONS: [[1, 1], [2]],
|
|
SampleBatch.INFOS: {"random": "info"},
|
|
},
|
|
)
|
|
|
|
flattened = c(d)
|
|
self.assertEqual(len(flattened), 1)
|
|
|
|
batch = flattened[0].data
|
|
self.assertTrue((batch[SampleBatch.NEXT_OBS] == [1, 1, 2, 2, 8.8]).all())
|
|
self.assertEqual(batch[SampleBatch.REWARDS][0], 5.8)
|
|
# Not flattened.
|
|
self.assertEqual(len(batch[SampleBatch.ACTIONS]), 2)
|
|
self.assertEqual(batch[SampleBatch.INFOS]["random"], "info")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|