mirror of
https://github.com/vale981/ray
synced 2025-03-08 11:31:40 -05:00
218 lines
8.1 KiB
Python
218 lines
8.1 KiB
Python
from gym.spaces import Discrete, Tuple
|
|
|
|
from ray.rllib.examples.models.impala_vision_nets import TorchImpalaVisionNet
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.tf.misc import normc_initializer
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.models.torch.misc import normc_initializer as \
|
|
torch_normc_initializer, SlimFC
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.utils import get_filter_config
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
# __sphinx_doc_begin__
|
|
class CNNPlusFCConcatModel(TFModelV2):
|
|
"""TFModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
|
|
|
|
Note: This model should be used for complex (Dict or Tuple) observation
|
|
spaces that have one or more image components.
|
|
"""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
# TODO: (sven) Support Dicts as well.
|
|
assert isinstance(obs_space.original_space, (Tuple)), \
|
|
"`obs_space.original_space` must be Tuple!"
|
|
|
|
super().__init__(obs_space, action_space, num_outputs, model_config,
|
|
name)
|
|
|
|
# Build the CNN(s) given obs_space's image components.
|
|
self.cnns = {}
|
|
concat_size = 0
|
|
for i, component in enumerate(obs_space.original_space):
|
|
# Image space.
|
|
if len(component.shape) == 3:
|
|
config = {
|
|
"conv_filters": model_config.get(
|
|
"conv_filters", get_filter_config(component.shape)),
|
|
"conv_activation": model_config.get("conv_activation"),
|
|
}
|
|
cnn = ModelCatalog.get_model_v2(
|
|
component,
|
|
action_space,
|
|
num_outputs=None,
|
|
model_config=config,
|
|
framework="tf",
|
|
name="cnn_{}".format(i))
|
|
concat_size += cnn.num_outputs
|
|
self.cnns[i] = cnn
|
|
# Discrete inputs -> One-hot encode.
|
|
elif isinstance(component, Discrete):
|
|
concat_size += component.n
|
|
# TODO: (sven) Multidiscrete (see e.g. our auto-LSTM wrappers).
|
|
# Everything else (1D Box).
|
|
else:
|
|
assert len(component.shape) == 1, \
|
|
"Only input Box 1D or 3D spaces allowed!"
|
|
concat_size += component.shape[-1]
|
|
|
|
self.logits_and_value_model = None
|
|
self._value_out = None
|
|
if num_outputs:
|
|
# Action-distribution head.
|
|
concat_layer = tf.keras.layers.Input((concat_size, ))
|
|
logits_layer = tf.keras.layers.Dense(
|
|
num_outputs,
|
|
activation=tf.keras.activations.linear,
|
|
name="logits")(concat_layer)
|
|
|
|
# Create the value branch model.
|
|
value_layer = tf.keras.layers.Dense(
|
|
1,
|
|
name="value_out",
|
|
activation=None,
|
|
kernel_initializer=normc_initializer(0.01))(concat_layer)
|
|
self.logits_and_value_model = tf.keras.models.Model(
|
|
concat_layer, [logits_layer, value_layer])
|
|
else:
|
|
self.num_outputs = concat_size
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
# Push image observations through our CNNs.
|
|
outs = []
|
|
for i, component in enumerate(input_dict["obs"]):
|
|
if i in self.cnns:
|
|
cnn_out, _ = self.cnns[i]({"obs": component})
|
|
outs.append(cnn_out)
|
|
else:
|
|
outs.append(component)
|
|
# Concat all outputs and the non-image inputs.
|
|
out = tf.concat(outs, axis=1)
|
|
if not self.logits_and_value_model:
|
|
return out, []
|
|
|
|
# Value branch.
|
|
logits, values = self.logits_and_value_model(out)
|
|
self._value_out = tf.reshape(values, [-1])
|
|
return logits, []
|
|
|
|
@override(ModelV2)
|
|
def value_function(self):
|
|
return self._value_out
|
|
|
|
|
|
# __sphinx_doc_end__
|
|
|
|
|
|
class TorchCNNPlusFCConcatModel(TorchModelV2, nn.Module):
|
|
"""TorchModelV2 concat'ing CNN outputs to flat input(s), followed by FC(s).
|
|
|
|
Note: This model should be used for complex (Dict or Tuple) observation
|
|
spaces that have one or more image components.
|
|
"""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
# TODO: (sven) Support Dicts as well.
|
|
assert isinstance(obs_space.original_space, (Tuple)), \
|
|
"`obs_space.original_space` must be Tuple!"
|
|
|
|
nn.Module.__init__(self)
|
|
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
|
|
model_config, name)
|
|
|
|
# Atari type CNNs or IMPALA type CNNs (with residual layers)?
|
|
self.cnn_type = self.model_config["custom_model_config"].get(
|
|
"conv_type", "atari")
|
|
|
|
# Build the CNN(s) given obs_space's image components.
|
|
self.cnns = {}
|
|
concat_size = 0
|
|
for i, component in enumerate(obs_space.original_space):
|
|
# Image space.
|
|
if len(component.shape) == 3:
|
|
config = {
|
|
"conv_filters": model_config.get(
|
|
"conv_filters", get_filter_config(component.shape)),
|
|
"conv_activation": model_config.get("conv_activation"),
|
|
}
|
|
if self.cnn_type == "atari":
|
|
cnn = ModelCatalog.get_model_v2(
|
|
component,
|
|
action_space,
|
|
num_outputs=None,
|
|
model_config=config,
|
|
framework="torch",
|
|
name="cnn_{}".format(i))
|
|
else:
|
|
cnn = TorchImpalaVisionNet(
|
|
component,
|
|
action_space,
|
|
num_outputs=None,
|
|
model_config=config,
|
|
name="cnn_{}".format(i))
|
|
|
|
concat_size += cnn.num_outputs
|
|
self.cnns[i] = cnn
|
|
self.add_module("cnn_{}".format(i), cnn)
|
|
# Discrete inputs -> One-hot encode.
|
|
elif isinstance(component, Discrete):
|
|
concat_size += component.n
|
|
# TODO: (sven) Multidiscrete (see e.g. our auto-LSTM wrappers).
|
|
# Everything else (1D Box).
|
|
else:
|
|
assert len(component.shape) == 1, \
|
|
"Only input Box 1D or 3D spaces allowed!"
|
|
concat_size += component.shape[-1]
|
|
|
|
self.logits_layer = None
|
|
self.value_layer = None
|
|
self._value_out = None
|
|
|
|
if num_outputs:
|
|
# Action-distribution head.
|
|
self.logits_layer = SlimFC(
|
|
in_size=concat_size,
|
|
out_size=num_outputs,
|
|
activation_fn=None,
|
|
)
|
|
# Create the value branch model.
|
|
self.value_layer = SlimFC(
|
|
in_size=concat_size,
|
|
out_size=1,
|
|
activation_fn=None,
|
|
initializer=torch_normc_initializer(0.01))
|
|
else:
|
|
self.num_outputs = concat_size
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
# Push image observations through our CNNs.
|
|
outs = []
|
|
for i, component in enumerate(input_dict["obs"]):
|
|
if i in self.cnns:
|
|
cnn_out, _ = self.cnns[i]({"obs": component})
|
|
outs.append(cnn_out)
|
|
else:
|
|
outs.append(component)
|
|
# Concat all outputs and the non-image inputs.
|
|
out = torch.cat(outs, dim=1)
|
|
if self.logits_layer is None:
|
|
return out, []
|
|
|
|
# Value branch.
|
|
logits, values = self.logits_layer(out), self.value_layer(out)
|
|
self._value_out = torch.reshape(values, [-1])
|
|
return logits, []
|
|
|
|
@override(ModelV2)
|
|
def value_function(self):
|
|
return self._value_out
|