ray/rllib/evaluation/tests/test_episode.py

142 lines
4.8 KiB
Python

import ray
import unittest
import numpy as np
from ray.rllib.agents.callbacks import DefaultCallbacks
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.examples.env.mock_env import MockEnv3
from ray.rllib.policy import Policy
from ray.rllib.utils import override
NUM_STEPS = 25
NUM_AGENTS = 4
class LastInfoCallback(DefaultCallbacks):
def __init__(self):
super(LastInfoCallback, self).__init__()
self.tc = unittest.TestCase()
self.step = 0
def on_episode_start(self, worker, base_env, policies, episode, env_index,
**kwargs):
self.step = 0
self._check_last_values(episode)
def on_episode_step(self,
worker,
base_env,
episode,
env_index=None,
**kwargs):
self.step += 1
self._check_last_values(episode)
def on_episode_end(self, worker, base_env, policies, episode, **kwargs):
self._check_last_values(episode)
def _check_last_values(self, episode):
last_obs = {
k: np.where(v)[0].item()
for k, v in episode._agent_to_last_obs.items()
}
last_info = episode._agent_to_last_info
last_done = episode._agent_to_last_done
last_action = episode._agent_to_last_action
last_reward = {
k: v[-1]
for k, v in episode._agent_reward_history.items()
}
if self.step == 0:
for last in [
last_obs, last_info, last_done, last_action, last_reward
]:
self.tc.assertEqual(last, {})
else:
for agent in last_obs.keys():
index = int(str(agent).replace("agent", ""))
self.tc.assertEqual(last_obs[agent], self.step + index)
self.tc.assertEqual(last_reward[agent], self.step + index)
self.tc.assertEqual(last_done[agent], self.step == NUM_STEPS)
if self.step == 1:
self.tc.assertEqual(last_action[agent], 0)
else:
self.tc.assertEqual(last_action[agent],
self.step + index - 1)
self.tc.assertEqual(last_info[agent]["timestep"],
self.step + index)
class EchoPolicy(Policy):
@override(Policy)
def compute_actions(self,
obs_batch,
state_batches=None,
prev_action_batch=None,
prev_reward_batch=None,
episodes=None,
explore=None,
timestep=None,
**kwargs):
return obs_batch.argmax(axis=1), [], {}
class EpisodeEnv(MultiAgentEnv):
def __init__(self, episode_length, num):
self.agents = [MockEnv3(episode_length) for _ in range(num)]
self.dones = set()
self.observation_space = self.agents[0].observation_space
self.action_space = self.agents[0].action_space
def reset(self):
self.dones = set()
return {i: a.reset() for i, a in enumerate(self.agents)}
def step(self, action_dict):
obs, rew, done, info = {}, {}, {}, {}
print("ACTIONDICT IN ENV\n", action_dict)
for i, action in action_dict.items():
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
obs[i] = obs[i] + i
rew[i] = rew[i] + i
info[i]["timestep"] = info[i]["timestep"] + i
if done[i]:
self.dones.add(i)
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
class TestEpisodeLastValues(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init(num_cpus=1)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_singleagent_env(self):
ev = RolloutWorker(
env_creator=lambda _: MockEnv3(NUM_STEPS),
policy_spec=EchoPolicy,
callbacks=LastInfoCallback)
ev.sample()
def test_multiagent_env(self):
temp_env = EpisodeEnv(NUM_STEPS, NUM_AGENTS)
ev = RolloutWorker(
env_creator=lambda _: EpisodeEnv(NUM_STEPS, NUM_AGENTS),
policy_spec={
str(agent_id): (EchoPolicy, temp_env.observation_space,
temp_env.action_space, {})
for agent_id in range(NUM_AGENTS)
},
policy_mapping_fn=lambda aid, eps, **kwargs: str(aid),
callbacks=LastInfoCallback)
ev.sample()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))