ray/examples/policy_gradient/reinforce/agent.py
Philipp Moritz 555dcf35a2 Add policy gradient example. (#344)
* add policy gradient example

* fix typos

* Minor changes plus some documentation.

* Minor fixes.
2017-03-07 23:42:44 -08:00

41 lines
1.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os
import ray
from reinforce.env import BatchedEnv
from reinforce.policy import ProximalPolicyLoss
from reinforce.filter import MeanStdFilter
from reinforce.rollout import rollouts, add_advantage_values
class Agent(object):
def __init__(self, name, batchsize, config, use_gpu):
if not use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
self.env = BatchedEnv(name, batchsize, preprocessor=None)
self.sess = tf.Session()
self.ppo = ProximalPolicyLoss(self.env.observation_space, self.env.action_space, config, self.sess)
self.optimizer = tf.train.AdamOptimizer(config["sgd_stepsize"])
self.train_op = self.optimizer.minimize(self.ppo.loss)
self.variables = ray.experimental.TensorFlowVariables(self.ppo.loss, self.sess)
self.observation_filter = MeanStdFilter(self.env.observation_space.shape, clip=None)
self.reward_filter = MeanStdFilter((), clip=5.0)
self.sess.run(tf.global_variables_initializer())
def get_weights(self):
return self.variables.get_weights()
def load_weights(self, weights):
self.variables.set_weights(weights)
def compute_trajectory(self, gamma, lam, horizon):
trajectory = rollouts(self.ppo, self.env, horizon, self.observation_filter, self.reward_filter)
add_advantage_values(trajectory, gamma, lam, self.reward_filter)
return trajectory
RemoteAgent = ray.actor(Agent)