mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
178 lines
7.9 KiB
Python
178 lines
7.9 KiB
Python
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.torch_policy import TorchPolicy
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.utils import add_mixins
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.torch_ops import convert_to_non_torch_type
|
|
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
@DeveloperAPI
|
|
def build_torch_policy(name,
|
|
*,
|
|
loss_fn,
|
|
get_default_config=None,
|
|
stats_fn=None,
|
|
postprocess_fn=None,
|
|
extra_action_out_fn=None,
|
|
extra_grad_process_fn=None,
|
|
optimizer_fn=None,
|
|
before_init=None,
|
|
after_init=None,
|
|
action_sampler_fn=None,
|
|
action_distribution_fn=None,
|
|
make_model_and_action_dist=None,
|
|
mixins=None,
|
|
get_batch_divisibility_req=None):
|
|
"""Helper function for creating a torch policy at runtime.
|
|
|
|
Arguments:
|
|
name (str): name of the policy (e.g., "PPOTorchPolicy")
|
|
loss_fn (func): function that returns a loss tensor as arguments
|
|
(policy, model, dist_class, train_batch)
|
|
get_default_config (func): optional function that returns the default
|
|
config to merge with any overrides
|
|
stats_fn (func): optional function that returns a dict of
|
|
values given the policy and batch input tensors
|
|
postprocess_fn (func): optional experience postprocessing function
|
|
that takes the same args as Policy.postprocess_trajectory()
|
|
extra_action_out_fn (func): optional function that returns
|
|
a dict of extra values to include in experiences
|
|
extra_grad_process_fn (func): optional function that is called after
|
|
gradients are computed and returns processing info
|
|
optimizer_fn (func): optional function that returns a torch optimizer
|
|
given the policy and config
|
|
before_init (func): optional function to run at the beginning of
|
|
policy init that takes the same arguments as the policy constructor
|
|
after_init (func): optional function to run at the end of policy init
|
|
that takes the same arguments as the policy constructor
|
|
action_sampler_fn (Optional[callable]): A callable returning a sampled
|
|
action and its log-likelihood given some (obs and state) inputs.
|
|
action_distribution_fn (Optional[callable]): A callable returning
|
|
distribution inputs (parameters), a dist-class to generate an
|
|
action distribution object from, and internal-state outputs (or an
|
|
empty list if not applicable).
|
|
make_model_and_action_dist (func): optional func that takes the same
|
|
arguments as policy init and returns a tuple of model instance and
|
|
torch action distribution class. If not specified, the default
|
|
model and action dist from the catalog will be used
|
|
mixins (list): list of any class mixins for the returned policy class.
|
|
These mixins will be applied in order and will have higher
|
|
precedence than the TorchPolicy class
|
|
get_batch_divisibility_req (Optional[callable]): Optional callable that
|
|
returns the divisibility requirement for sample batches.
|
|
|
|
Returns:
|
|
a TorchPolicy instance that uses the specified args
|
|
"""
|
|
|
|
original_kwargs = locals().copy()
|
|
base = add_mixins(TorchPolicy, mixins)
|
|
|
|
class policy_cls(base):
|
|
def __init__(self, obs_space, action_space, config):
|
|
if get_default_config:
|
|
config = dict(get_default_config(), **config)
|
|
self.config = config
|
|
|
|
if before_init:
|
|
before_init(self, obs_space, action_space, config)
|
|
|
|
if make_model_and_action_dist:
|
|
self.model, dist_class = make_model_and_action_dist(
|
|
self, obs_space, action_space, config)
|
|
# Make sure, we passed in a correct Model factory.
|
|
assert isinstance(self.model, TorchModelV2), \
|
|
"ERROR: TorchPolicy::make_model_and_action_dist must " \
|
|
"return a TorchModelV2 object!"
|
|
else:
|
|
dist_class, logit_dim = ModelCatalog.get_action_dist(
|
|
action_space, self.config["model"], framework="torch")
|
|
self.model = ModelCatalog.get_model_v2(
|
|
obs_space=obs_space,
|
|
action_space=action_space,
|
|
num_outputs=logit_dim,
|
|
model_config=self.config["model"],
|
|
framework="torch",
|
|
**self.config["model"].get("custom_options", {}))
|
|
|
|
TorchPolicy.__init__(
|
|
self,
|
|
obs_space,
|
|
action_space,
|
|
config,
|
|
model=self.model,
|
|
loss=loss_fn,
|
|
action_distribution_class=dist_class,
|
|
action_sampler_fn=action_sampler_fn,
|
|
action_distribution_fn=action_distribution_fn,
|
|
max_seq_len=config["model"]["max_seq_len"],
|
|
get_batch_divisibility_req=get_batch_divisibility_req,
|
|
)
|
|
|
|
if after_init:
|
|
after_init(self, obs_space, action_space, config)
|
|
|
|
@override(Policy)
|
|
def postprocess_trajectory(self,
|
|
sample_batch,
|
|
other_agent_batches=None,
|
|
episode=None):
|
|
# Do all post-processing always with no_grad().
|
|
# Not using this here will introduce a memory leak (issue #6962).
|
|
with torch.no_grad():
|
|
# Call super's postprocess_trajectory first.
|
|
sample_batch = super().postprocess_trajectory(
|
|
convert_to_non_torch_type(sample_batch),
|
|
convert_to_non_torch_type(other_agent_batches), episode)
|
|
if postprocess_fn:
|
|
return postprocess_fn(self, sample_batch,
|
|
other_agent_batches, episode)
|
|
|
|
return sample_batch
|
|
|
|
@override(TorchPolicy)
|
|
def extra_grad_process(self):
|
|
if extra_grad_process_fn:
|
|
return extra_grad_process_fn(self)
|
|
else:
|
|
return TorchPolicy.extra_grad_process(self)
|
|
|
|
@override(TorchPolicy)
|
|
def extra_action_out(self, input_dict, state_batches, model,
|
|
action_dist):
|
|
with torch.no_grad():
|
|
if extra_action_out_fn:
|
|
stats_dict = extra_action_out_fn(
|
|
self, input_dict, state_batches, model, action_dist)
|
|
else:
|
|
stats_dict = TorchPolicy.extra_action_out(
|
|
self, input_dict, state_batches, model, action_dist)
|
|
return convert_to_non_torch_type(stats_dict)
|
|
|
|
@override(TorchPolicy)
|
|
def optimizer(self):
|
|
if optimizer_fn:
|
|
return optimizer_fn(self, self.config)
|
|
else:
|
|
return TorchPolicy.optimizer(self)
|
|
|
|
@override(TorchPolicy)
|
|
def extra_grad_info(self, train_batch):
|
|
with torch.no_grad():
|
|
if stats_fn:
|
|
stats_dict = stats_fn(self, train_batch)
|
|
else:
|
|
stats_dict = TorchPolicy.extra_grad_info(self, train_batch)
|
|
return convert_to_non_torch_type(stats_dict)
|
|
|
|
def with_updates(**overrides):
|
|
return build_torch_policy(**dict(original_kwargs, **overrides))
|
|
|
|
policy_cls.with_updates = staticmethod(with_updates)
|
|
policy_cls.__name__ = name
|
|
policy_cls.__qualname__ = name
|
|
return policy_cls
|