ray/rllib
Sven Mika 5518a738b3
[RLlib] Fix erroneous use of LinearSchedule (in DDPG's exploration annealing). (#7125)
* Fix erroneous use of LinearSchedule (in DDPG's exploration annealing).
Erase schedules_obsoleted.py.

* Trigger re-test.

* Re-test.
2020-02-12 23:46:49 -08:00
..
agents [RLlib] Fix erroneous use of LinearSchedule (in DDPG's exploration annealing). (#7125) 2020-02-12 23:46:49 -08:00
contrib [RLlib] Update MADDPG example repo to maintained fork (#6831) 2020-01-18 13:08:27 -08:00
env Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
evaluation [rllib] Add Decentralized DDPPO trainer and documentation (#7088) 2020-02-10 15:28:27 -08:00
examples [RLlib] Exploration API (+EpsilonGreedy sub-class). (#6974) 2020-02-10 15:22:07 -08:00
models [RLlib] Fix KL method of MultiCategorial tf distribution (issue #7009). (#7119) 2020-02-12 12:46:15 -08:00
offline [RLlib] Exploration API (+EpsilonGreedy sub-class). (#6974) 2020-02-10 15:22:07 -08:00
optimizers [RLlib] Fix AsyncReplayOptimizer bug where it swallows all good worker tasks … (#7111) 2020-02-11 12:51:44 -08:00
policy [rllib] Add Decentralized DDPPO trainer and documentation (#7088) 2020-02-10 15:28:27 -08:00
tests [RLlib] Exploration API (+EpsilonGreedy sub-class). (#6974) 2020-02-10 15:22:07 -08:00
tuned_examples [rllib] Add Decentralized DDPPO trainer and documentation (#7088) 2020-02-10 15:28:27 -08:00
utils [RLlib] Fix erroneous use of LinearSchedule (in DDPG's exploration annealing). (#7125) 2020-02-12 23:46:49 -08:00
__init__.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
asv.conf.json [rllib] Try moving RLlib to top level dir (#5324) 2019-08-05 23:25:49 -07:00
BUILD [RLlib] Schedule-classes multi-framework support. (#6926) 2020-01-28 11:07:55 -08:00
README.md MADDPG implementation in RLlib (#5348) 2019-08-06 16:22:06 -07:00
rollout.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
scripts.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
train.py [RLlib] Add torch flag to train.py (#6807) 2020-01-17 18:48:44 -08:00

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a unified API for a variety of applications.

For an overview of RLlib, see the documentation.

If you've found RLlib useful for your research, you can cite the paper as follows:

@inproceedings{liang2018rllib,
    Author = {Eric Liang and
              Richard Liaw and
              Robert Nishihara and
              Philipp Moritz and
              Roy Fox and
              Ken Goldberg and
              Joseph E. Gonzalez and
              Michael I. Jordan and
              Ion Stoica},
    Title = {{RLlib}: Abstractions for Distributed Reinforcement Learning},
    Booktitle = {International Conference on Machine Learning ({ICML})},
    Year = {2018}
}

Development Install

You can develop RLlib locally without needing to compile Ray by using the setup-dev.py script. This sets up links between the rllib dir in your git repo and the one bundled with the ray package. When using this script, make sure that your git branch is in sync with the installed Ray binaries (i.e., you are up-to-date on master and have the latest wheel installed.)