ray/rllib/examples/models/parametric_actions_model.py

200 lines
7.1 KiB
Python

from gym.spaces import Box
from ray.rllib.algorithms.dqn.distributional_q_tf_model import DistributionalQTFModel
from ray.rllib.algorithms.dqn.dqn_torch_model import DQNTorchModel
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.torch_utils import FLOAT_MIN, FLOAT_MAX
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
class ParametricActionsModel(DistributionalQTFModel):
"""Parametric action model that handles the dot product and masking.
This assumes the outputs are logits for a single Categorical action dist.
Getting this to work with a more complex output (e.g., if the action space
is a tuple of several distributions) is also possible but left as an
exercise to the reader.
"""
def __init__(
self,
obs_space,
action_space,
num_outputs,
model_config,
name,
true_obs_shape=(4,),
action_embed_size=2,
**kw
):
super(ParametricActionsModel, self).__init__(
obs_space, action_space, num_outputs, model_config, name, **kw
)
self.action_embed_model = FullyConnectedNetwork(
Box(-1, 1, shape=true_obs_shape),
action_space,
action_embed_size,
model_config,
name + "_action_embed",
)
def forward(self, input_dict, state, seq_lens):
# Extract the available actions tensor from the observation.
avail_actions = input_dict["obs"]["avail_actions"]
action_mask = input_dict["obs"]["action_mask"]
# Compute the predicted action embedding
action_embed, _ = self.action_embed_model({"obs": input_dict["obs"]["cart"]})
# Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
# avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
intent_vector = tf.expand_dims(action_embed, 1)
# Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=2)
# Mask out invalid actions (use tf.float32.min for stability)
inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
return action_logits + inf_mask, state
def value_function(self):
return self.action_embed_model.value_function()
class TorchParametricActionsModel(DQNTorchModel):
"""PyTorch version of above ParametricActionsModel."""
def __init__(
self,
obs_space,
action_space,
num_outputs,
model_config,
name,
true_obs_shape=(4,),
action_embed_size=2,
**kw
):
DQNTorchModel.__init__(
self, obs_space, action_space, num_outputs, model_config, name, **kw
)
self.action_embed_model = TorchFC(
Box(-1, 1, shape=true_obs_shape),
action_space,
action_embed_size,
model_config,
name + "_action_embed",
)
def forward(self, input_dict, state, seq_lens):
# Extract the available actions tensor from the observation.
avail_actions = input_dict["obs"]["avail_actions"]
action_mask = input_dict["obs"]["action_mask"]
# Compute the predicted action embedding
action_embed, _ = self.action_embed_model({"obs": input_dict["obs"]["cart"]})
# Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
# avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
intent_vector = torch.unsqueeze(action_embed, 1)
# Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
action_logits = torch.sum(avail_actions * intent_vector, dim=2)
# Mask out invalid actions (use -inf to tag invalid).
# These are then recognized by the EpsilonGreedy exploration component
# as invalid actions that are not to be chosen.
inf_mask = torch.clamp(torch.log(action_mask), FLOAT_MIN, FLOAT_MAX)
return action_logits + inf_mask, state
def value_function(self):
return self.action_embed_model.value_function()
class ParametricActionsModelThatLearnsEmbeddings(DistributionalQTFModel):
"""Same as the above ParametricActionsModel.
However, this version also learns the action embeddings.
"""
def __init__(
self,
obs_space,
action_space,
num_outputs,
model_config,
name,
true_obs_shape=(4,),
action_embed_size=2,
**kw
):
super(ParametricActionsModelThatLearnsEmbeddings, self).__init__(
obs_space, action_space, num_outputs, model_config, name, **kw
)
action_ids_shifted = tf.constant(
list(range(1, num_outputs + 1)), dtype=tf.float32
)
obs_cart = tf.keras.layers.Input(shape=true_obs_shape, name="obs_cart")
valid_avail_actions_mask = tf.keras.layers.Input(
shape=(num_outputs), name="valid_avail_actions_mask"
)
self.pred_action_embed_model = FullyConnectedNetwork(
Box(-1, 1, shape=true_obs_shape),
action_space,
action_embed_size,
model_config,
name + "_pred_action_embed",
)
# Compute the predicted action embedding
pred_action_embed, _ = self.pred_action_embed_model({"obs": obs_cart})
_value_out = self.pred_action_embed_model.value_function()
# Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
# avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
intent_vector = tf.expand_dims(pred_action_embed, 1)
valid_avail_actions = action_ids_shifted * valid_avail_actions_mask
# Embedding for valid available actions which will be learned.
# Embedding vector for 0 is an invalid embedding (a "dummy embedding").
valid_avail_actions_embed = tf.keras.layers.Embedding(
input_dim=num_outputs + 1,
output_dim=action_embed_size,
name="action_embed_matrix",
)(valid_avail_actions)
# Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
action_logits = tf.reduce_sum(valid_avail_actions_embed * intent_vector, axis=2)
# Mask out invalid actions (use tf.float32.min for stability)
inf_mask = tf.maximum(tf.math.log(valid_avail_actions_mask), tf.float32.min)
action_logits = action_logits + inf_mask
self.param_actions_model = tf.keras.Model(
inputs=[obs_cart, valid_avail_actions_mask],
outputs=[action_logits, _value_out],
)
self.param_actions_model.summary()
def forward(self, input_dict, state, seq_lens):
# Extract the available actions mask tensor from the observation.
valid_avail_actions_mask = input_dict["obs"]["valid_avail_actions_mask"]
action_logits, self._value_out = self.param_actions_model(
[input_dict["obs"]["cart"], valid_avail_actions_mask]
)
return action_logits, state
def value_function(self):
return self._value_out