ray/rllib/utils/exploration/tests/test_explorations.py
Yi Cheng fd0f967d2e
Revert "[RLlib] Move (A/DD)?PPO and IMPALA algos to algorithms dir and rename policy and trainer classes. (#25346)" (#25420)
This reverts commit e4ceae19ef.

Reverts #25346

linux://python/ray/tests:test_client_library_integration never fail before this PR.

In the CI of the reverted PR, it also fails (https://buildkite.com/ray-project/ray-builders-pr/builds/34079#01812442-c541-4145-af22-2a012655c128). So high likely it's because of this PR.

And test output failure seems related as well (https://buildkite.com/ray-project/ray-builders-branch/builds/7923#018125c2-4812-4ead-a42f-7fddb344105b)
2022-06-02 20:38:44 -07:00

203 lines
6 KiB
Python

import numpy as np
import sys
import unittest
import ray
import ray.rllib.algorithms.a2c as a2c
import ray.rllib.algorithms.a3c as a3c
import ray.rllib.algorithms.ddpg as ddpg
import ray.rllib.algorithms.ddpg.td3 as td3
import ray.rllib.algorithms.dqn as dqn
import ray.rllib.agents.impala as impala
import ray.rllib.algorithms.pg as pg
import ray.rllib.agents.ppo as ppo
import ray.rllib.algorithms.sac as sac
from ray.rllib.utils import check, framework_iterator
def do_test_explorations(
run, env, config, dummy_obs, prev_a=None, expected_mean_action=None
):
"""Calls an Agent's `compute_actions` with different `explore` options."""
core_config = config.copy()
if run not in [a3c.A3C]:
core_config["num_workers"] = 0
# Test all frameworks.
for _ in framework_iterator(core_config):
print("Agent={}".format(run))
# Test for both the default Agent's exploration AND the `Random`
# exploration class.
for exploration in [None, "Random"]:
local_config = core_config.copy()
if exploration == "Random":
# TODO(sven): Random doesn't work for IMPALA yet.
if run is impala.ImpalaTrainer:
continue
local_config["exploration_config"] = {"type": "Random"}
print("exploration={}".format(exploration or "default"))
trainer = run(config=local_config, env=env)
# Make sure all actions drawn are the same, given same
# observations.
actions = []
for _ in range(25):
actions.append(
trainer.compute_single_action(
observation=dummy_obs,
explore=False,
prev_action=prev_a,
prev_reward=1.0 if prev_a is not None else None,
)
)
check(actions[-1], actions[0])
# Make sure actions drawn are different
# (around some mean value), given constant observations.
actions = []
for _ in range(500):
actions.append(
trainer.compute_single_action(
observation=dummy_obs,
explore=True,
prev_action=prev_a,
prev_reward=1.0 if prev_a is not None else None,
)
)
check(
np.mean(actions),
expected_mean_action if expected_mean_action is not None else 0.5,
atol=0.4,
)
# Check that the stddev is not 0.0 (values differ).
check(np.std(actions), 0.0, false=True)
class TestExplorations(unittest.TestCase):
"""
Tests all Exploration components and the deterministic flag for
compute_action calls.
"""
@classmethod
def setUpClass(cls):
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_a2c(self):
do_test_explorations(
a2c.A2C,
"CartPole-v0",
a2c.A2C_DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1),
)
def test_a3c(self):
do_test_explorations(
a3c.A3C,
"CartPole-v0",
a3c.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1),
)
def test_ddpg(self):
# Switch off random timesteps at beginning. We want to test actual
# GaussianNoise right away.
config = ddpg.DEFAULT_CONFIG.copy()
config["exploration_config"]["random_timesteps"] = 0
do_test_explorations(
ddpg.DDPGTrainer,
"Pendulum-v1",
config,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0,
)
def test_simple_dqn(self):
do_test_explorations(
dqn.SimpleQTrainer,
"CartPole-v0",
dqn.SIMPLE_Q_DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
)
def test_dqn(self):
do_test_explorations(
dqn.DQNTrainer,
"CartPole-v0",
dqn.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
)
def test_impala(self):
do_test_explorations(
impala.ImpalaTrainer,
"CartPole-v0",
dict(impala.DEFAULT_CONFIG.copy(), num_gpus=0),
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(0),
)
def test_pg(self):
do_test_explorations(
pg.PGTrainer,
"CartPole-v0",
pg.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1),
)
def test_ppo_discr(self):
do_test_explorations(
ppo.PPOTrainer,
"CartPole-v0",
ppo.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(0),
)
def test_ppo_cont(self):
do_test_explorations(
ppo.PPOTrainer,
"Pendulum-v1",
ppo.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0]),
prev_a=np.array([0.0]),
expected_mean_action=0.0,
)
def test_sac(self):
do_test_explorations(
sac.SACTrainer,
"Pendulum-v1",
sac.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0,
)
def test_td3(self):
config = td3.TD3_DEFAULT_CONFIG.copy()
# Switch off random timesteps at beginning. We want to test actual
# GaussianNoise right away.
config["exploration_config"]["random_timesteps"] = 0
do_test_explorations(
td3.TD3Trainer,
"Pendulum-v1",
config,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0,
)
if __name__ == "__main__":
import pytest
sys.exit(pytest.main(["-v", __file__]))