ray/rllib/examples/batch_norm_model.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

57 lines
1.7 KiB
Python

"""Example of using a custom model with batch norm."""
import argparse
import ray
from ray import tune
from ray.rllib.models import Model, ModelCatalog
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--num-iters", type=int, default=200)
parser.add_argument("--run", type=str, default="PPO")
class BatchNormModel(Model):
def _build_layers_v2(self, input_dict, num_outputs, options):
last_layer = input_dict["obs"]
hiddens = [256, 256]
for i, size in enumerate(hiddens):
label = "fc{}".format(i)
last_layer = tf.layers.dense(
last_layer,
size,
kernel_initializer=normc_initializer(1.0),
activation=tf.nn.tanh,
name=label)
# Add a batch norm layer
last_layer = tf.layers.batch_normalization(
last_layer, training=input_dict["is_training"])
output = tf.layers.dense(
last_layer,
num_outputs,
kernel_initializer=normc_initializer(0.01),
activation=None,
name="fc_out")
return output, last_layer
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
ModelCatalog.register_custom_model("bn_model", BatchNormModel)
tune.run(
args.run,
stop={"training_iteration": args.num_iters},
config={
"env": "Pendulum-v0" if args.run == "DDPG" else "CartPole-v0",
"model": {
"custom_model": "bn_model",
},
"num_workers": 0,
},
)