ray/rllib/policy/view_requirement.py

86 lines
3.8 KiB
Python

import gym
import numpy as np
from typing import List, Optional, Union
from ray.rllib.utils.framework import try_import_torch
torch, _ = try_import_torch()
class ViewRequirement:
"""Single view requirement (for one column in an SampleBatch/input_dict).
Policies and ModelV2s return a Dict[str, ViewRequirement] upon calling
their `[train|inference]_view_requirements()` methods, where the str key
represents the column name (C) under which the view is available in the
input_dict/SampleBatch and ViewRequirement specifies the actual underlying
column names (in the original data buffer), timestep shifts, and other
options to build the view.
Examples:
>>> # The default ViewRequirement for a Model is:
>>> req = [ModelV2].view_requirements
>>> print(req)
{"obs": ViewRequirement(shift=0)}
"""
def __init__(self,
data_col: Optional[str] = None,
space: gym.Space = None,
shift: Union[int, str, List[int]] = 0,
index: Optional[int] = None,
batch_repeat_value: int = 1,
used_for_compute_actions: bool = True,
used_for_training: bool = True):
"""Initializes a ViewRequirement object.
Args:
data_col (Optional[str]): The data column name from the SampleBatch
(str key). If None, use the dict key under which this
ViewRequirement resides.
space (gym.Space): The gym Space used in case we need to pad data
in inaccessible areas of the trajectory (t<0 or t>H).
Default: Simple box space, e.g. rewards.
shift (Union[int, str, List[int]]): Single shift value or
list of relative positions to use (relative to the underlying
`data_col`).
Example: For a view column "prev_actions", you can set
`data_col="actions"` and `shift=-1`.
Example: For a view column "obs" in an Atari framestacking
fashion, you can set `data_col="obs"` and
`shift=[-3, -2, -1, 0]`.
Example: For the obs input to an attention net, you can specify
a range via a str: `shift="-100:0"`, which will pass in
the past 100 observations plus the current one.
index (Optional[int]): An optional absolute position arg,
used e.g. for the location of a requested inference dict within
the trajectory. Negative values refer to counting from the end
of a trajectory.
used_for_compute_actions (bool): Whether the data will be used for
creating input_dicts for `Policy.compute_actions()` calls (or
`Policy.compute_actions_from_input_dict()`).
used_for_training (bool): Whether the data will be used for
training. If False, the column will not be copied into the
final train batch.
"""
self.data_col = data_col
self.space = space if space is not None else gym.spaces.Box(
float("-inf"), float("inf"), shape=())
self.shift = shift
if isinstance(self.shift, (list, tuple)):
self.shift = np.array(self.shift)
# Special case: Providing a (probably larger) range of indices, e.g.
# "-100:0" (past 100 timesteps plus current one).
self.shift_from = self.shift_to = None
if isinstance(self.shift, str):
f, t = self.shift.split(":")
self.shift_from = int(f)
self.shift_to = int(t)
self.index = index
self.batch_repeat_value = batch_repeat_value
self.used_for_compute_actions = used_for_compute_actions
self.used_for_training = used_for_training