mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
646 lines
26 KiB
Python
646 lines
26 KiB
Python
from functools import partial
|
|
from gym.spaces import Box, Dict, Tuple
|
|
import numpy as np
|
|
from scipy.stats import beta, norm
|
|
import tree # pip install dm_tree
|
|
import unittest
|
|
|
|
from ray.rllib.models.jax.jax_action_dist import JAXCategorical
|
|
from ray.rllib.models.tf.tf_action_dist import Beta, Categorical, \
|
|
DiagGaussian, GumbelSoftmax, MultiActionDistribution, MultiCategorical, \
|
|
SquashedGaussian
|
|
from ray.rllib.models.torch.torch_action_dist import TorchBeta, \
|
|
TorchCategorical, TorchDiagGaussian, TorchMultiActionDistribution, \
|
|
TorchMultiCategorical, TorchSquashedGaussian
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.numpy import MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT, \
|
|
softmax, SMALL_NUMBER, LARGE_INTEGER
|
|
from ray.rllib.utils.test_utils import check, framework_iterator
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
class TestDistributions(unittest.TestCase):
|
|
"""Tests ActionDistribution classes."""
|
|
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
# Set seeds for deterministic tests (make sure we don't fail
|
|
# because of "bad" sampling).
|
|
np.random.seed(42 + 1)
|
|
torch.manual_seed(42 + 1)
|
|
|
|
def _stability_test(self,
|
|
distribution_cls,
|
|
network_output_shape,
|
|
fw,
|
|
sess=None,
|
|
bounds=None,
|
|
extra_kwargs=None):
|
|
extreme_values = [
|
|
0.0,
|
|
float(LARGE_INTEGER),
|
|
-float(LARGE_INTEGER),
|
|
1.1e-34,
|
|
1.1e34,
|
|
-1.1e-34,
|
|
-1.1e34,
|
|
SMALL_NUMBER,
|
|
-SMALL_NUMBER,
|
|
]
|
|
inputs = np.zeros(shape=network_output_shape, dtype=np.float32)
|
|
for batch_item in range(network_output_shape[0]):
|
|
for num in range(len(inputs[batch_item]) // 2):
|
|
inputs[batch_item][num] = np.random.choice(extreme_values)
|
|
else:
|
|
# For Gaussians, the second half of the vector is
|
|
# log standard deviations, and should therefore be
|
|
# the log of a positive number >= 1.
|
|
inputs[batch_item][num] = np.log(
|
|
max(1, np.random.choice((extreme_values))))
|
|
|
|
dist = distribution_cls(inputs, {}, **(extra_kwargs or {}))
|
|
for _ in range(100):
|
|
sample = dist.sample()
|
|
if fw == "jax":
|
|
sample_check = sample
|
|
elif fw != "tf":
|
|
sample_check = sample.numpy()
|
|
else:
|
|
sample_check = sess.run(sample)
|
|
assert not np.any(np.isnan(sample_check))
|
|
assert np.all(np.isfinite(sample_check))
|
|
if bounds:
|
|
assert np.min(sample_check) >= bounds[0]
|
|
assert np.max(sample_check) <= bounds[1]
|
|
# Make sure bounds make sense and are actually also being
|
|
# sampled.
|
|
if isinstance(bounds[0], int):
|
|
assert isinstance(bounds[1], int)
|
|
assert bounds[0] in sample_check
|
|
assert bounds[1] in sample_check
|
|
logp = dist.logp(sample)
|
|
if fw == "jax":
|
|
logp_check = logp
|
|
elif fw != "tf":
|
|
logp_check = logp.numpy()
|
|
else:
|
|
logp_check = sess.run(logp)
|
|
assert not np.any(np.isnan(logp_check))
|
|
assert np.all(np.isfinite(logp_check))
|
|
|
|
def test_categorical(self):
|
|
batch_size = 10000
|
|
num_categories = 4
|
|
# Create categorical distribution with n categories.
|
|
inputs_space = Box(
|
|
-1.0, 2.0, shape=(batch_size, num_categories), dtype=np.float32)
|
|
inputs_space.seed(42)
|
|
values_space = Box(
|
|
0, num_categories - 1, shape=(batch_size, ), dtype=np.int32)
|
|
values_space.seed(42)
|
|
|
|
inputs = inputs_space.sample()
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
# Create the correct distribution object.
|
|
cls = JAXCategorical if fw == "jax" else Categorical if \
|
|
fw != "torch" else TorchCategorical
|
|
categorical = cls(inputs, {})
|
|
|
|
# Do a stability test using extreme NN outputs to see whether
|
|
# sampling and logp'ing result in NaN or +/-inf values.
|
|
self._stability_test(
|
|
cls,
|
|
inputs_space.shape,
|
|
fw=fw,
|
|
sess=sess,
|
|
bounds=(0, num_categories - 1))
|
|
|
|
# Batch of size=3 and deterministic (True).
|
|
expected = np.transpose(np.argmax(inputs, axis=-1))
|
|
# Sample, expect always max value
|
|
# (max likelihood for deterministic draw).
|
|
out = categorical.deterministic_sample()
|
|
check(out, expected)
|
|
|
|
# Batch of size=3 and non-deterministic -> expect roughly the mean.
|
|
out = categorical.sample()
|
|
check(
|
|
np.mean(out) if fw == "jax" else tf.reduce_mean(out)
|
|
if fw != "torch" else torch.mean(out.float()),
|
|
1.0,
|
|
decimals=0)
|
|
|
|
# Test log-likelihood outputs.
|
|
probs = softmax(inputs)
|
|
values = values_space.sample()
|
|
|
|
out = categorical.logp(values
|
|
if fw != "torch" else torch.Tensor(values))
|
|
expected = []
|
|
for i in range(batch_size):
|
|
expected.append(np.sum(np.log(np.array(probs[i][values[i]]))))
|
|
check(out, expected, decimals=4)
|
|
|
|
# Test entropy outputs.
|
|
out = categorical.entropy()
|
|
expected_entropy = -np.sum(probs * np.log(probs), -1)
|
|
check(out, expected_entropy)
|
|
|
|
def test_multi_categorical(self):
|
|
batch_size = 100
|
|
num_categories = 3
|
|
num_sub_distributions = 5
|
|
# Create 5 categorical distributions of 3 categories each.
|
|
inputs_space = Box(
|
|
-1.0,
|
|
2.0,
|
|
shape=(batch_size, num_sub_distributions * num_categories))
|
|
inputs_space.seed(42)
|
|
values_space = Box(
|
|
0,
|
|
num_categories - 1,
|
|
shape=(num_sub_distributions, batch_size),
|
|
dtype=np.int32)
|
|
values_space.seed(42)
|
|
|
|
inputs = inputs_space.sample()
|
|
input_lengths = [num_categories] * num_sub_distributions
|
|
inputs_split = np.split(inputs, num_sub_distributions, axis=1)
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
# Create the correct distribution object.
|
|
cls = MultiCategorical if fw != "torch" else TorchMultiCategorical
|
|
multi_categorical = cls(inputs, None, input_lengths)
|
|
|
|
# Do a stability test using extreme NN outputs to see whether
|
|
# sampling and logp'ing result in NaN or +/-inf values.
|
|
self._stability_test(
|
|
cls,
|
|
inputs_space.shape,
|
|
fw=fw,
|
|
sess=sess,
|
|
bounds=(0, num_categories - 1),
|
|
extra_kwargs={"input_lens": input_lengths})
|
|
|
|
# Batch of size=3 and deterministic (True).
|
|
expected = np.transpose(np.argmax(inputs_split, axis=-1))
|
|
# Sample, expect always max value
|
|
# (max likelihood for deterministic draw).
|
|
out = multi_categorical.deterministic_sample()
|
|
check(out, expected)
|
|
|
|
# Batch of size=3 and non-deterministic -> expect roughly the mean.
|
|
out = multi_categorical.sample()
|
|
check(
|
|
tf.reduce_mean(out)
|
|
if fw != "torch" else torch.mean(out.float()),
|
|
1.0,
|
|
decimals=0)
|
|
|
|
# Test log-likelihood outputs.
|
|
probs = softmax(inputs_split)
|
|
values = values_space.sample()
|
|
|
|
out = multi_categorical.logp(values if fw != "torch" else [
|
|
torch.Tensor(values[i]) for i in range(num_sub_distributions)
|
|
]) # v in np.stack(values, 1)])
|
|
expected = []
|
|
for i in range(batch_size):
|
|
expected.append(
|
|
np.sum(
|
|
np.log(
|
|
np.array([
|
|
probs[j][i][values[j][i]]
|
|
for j in range(num_sub_distributions)
|
|
]))))
|
|
check(out, expected, decimals=4)
|
|
|
|
# Test entropy outputs.
|
|
out = multi_categorical.entropy()
|
|
expected_entropy = -np.sum(np.sum(probs * np.log(probs), 0), -1)
|
|
check(out, expected_entropy)
|
|
|
|
def test_squashed_gaussian(self):
|
|
"""Tests the SquashedGaussian ActionDistribution for all frameworks."""
|
|
input_space = Box(-2.0, 2.0, shape=(2000, 10))
|
|
input_space.seed(42)
|
|
|
|
low, high = -2.0, 1.0
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
cls = SquashedGaussian if fw != "torch" else TorchSquashedGaussian
|
|
|
|
# Do a stability test using extreme NN outputs to see whether
|
|
# sampling and logp'ing result in NaN or +/-inf values.
|
|
self._stability_test(
|
|
cls, input_space.shape, fw=fw, sess=sess, bounds=(low, high))
|
|
|
|
# Batch of size=n and deterministic.
|
|
inputs = input_space.sample()
|
|
means, _ = np.split(inputs, 2, axis=-1)
|
|
squashed_distribution = cls(inputs, {}, low=low, high=high)
|
|
expected = ((np.tanh(means) + 1.0) / 2.0) * (high - low) + low
|
|
# Sample n times, expect always mean value (deterministic draw).
|
|
out = squashed_distribution.deterministic_sample()
|
|
check(out, expected)
|
|
|
|
# Batch of size=n and non-deterministic -> expect roughly the mean.
|
|
inputs = input_space.sample()
|
|
means, log_stds = np.split(inputs, 2, axis=-1)
|
|
squashed_distribution = cls(inputs, {}, low=low, high=high)
|
|
expected = ((np.tanh(means) + 1.0) / 2.0) * (high - low) + low
|
|
values = squashed_distribution.sample()
|
|
if sess:
|
|
values = sess.run(values)
|
|
else:
|
|
values = values.numpy()
|
|
self.assertTrue(np.max(values) <= high)
|
|
self.assertTrue(np.min(values) >= low)
|
|
|
|
check(np.mean(values), expected.mean(), decimals=1)
|
|
|
|
# Test log-likelihood outputs.
|
|
sampled_action_logp = squashed_distribution.logp(
|
|
values if fw != "torch" else torch.Tensor(values))
|
|
if sess:
|
|
sampled_action_logp = sess.run(sampled_action_logp)
|
|
else:
|
|
sampled_action_logp = sampled_action_logp.numpy()
|
|
# Convert to parameters for distr.
|
|
stds = np.exp(
|
|
np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
|
|
# Unsquash values, then get log-llh from regular gaussian.
|
|
# atanh_in = np.clip((values - low) / (high - low) * 2.0 - 1.0,
|
|
# -1.0 + SMALL_NUMBER, 1.0 - SMALL_NUMBER)
|
|
normed_values = (values - low) / (high - low) * 2.0 - 1.0
|
|
save_normed_values = np.clip(normed_values, -1.0 + SMALL_NUMBER,
|
|
1.0 - SMALL_NUMBER)
|
|
unsquashed_values = np.arctanh(save_normed_values)
|
|
log_prob_unsquashed = np.sum(
|
|
np.log(norm.pdf(unsquashed_values, means, stds)), -1)
|
|
log_prob = log_prob_unsquashed - \
|
|
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
|
|
axis=-1)
|
|
check(np.sum(sampled_action_logp), np.sum(log_prob), rtol=0.05)
|
|
|
|
# NN output.
|
|
means = np.array([[0.1, 0.2, 0.3, 0.4, 50.0],
|
|
[-0.1, -0.2, -0.3, -0.4, -1.0]])
|
|
log_stds = np.array([[0.8, -0.2, 0.3, -1.0, 2.0],
|
|
[0.7, -0.3, 0.4, -0.9, 2.0]])
|
|
squashed_distribution = cls(
|
|
inputs=np.concatenate([means, log_stds], axis=-1),
|
|
model={},
|
|
low=low,
|
|
high=high)
|
|
# Convert to parameters for distr.
|
|
stds = np.exp(log_stds)
|
|
# Values to get log-likelihoods for.
|
|
values = np.array([[0.9, 0.2, 0.4, -0.1, -1.05],
|
|
[-0.9, -0.2, 0.4, -0.1, -1.05]])
|
|
|
|
# Unsquash values, then get log-llh from regular gaussian.
|
|
unsquashed_values = np.arctanh((values - low) /
|
|
(high - low) * 2.0 - 1.0)
|
|
log_prob_unsquashed = \
|
|
np.sum(np.log(norm.pdf(unsquashed_values, means, stds)), -1)
|
|
log_prob = log_prob_unsquashed - \
|
|
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
|
|
axis=-1)
|
|
|
|
outs = squashed_distribution.logp(values if fw != "torch" else
|
|
torch.Tensor(values))
|
|
if sess:
|
|
outs = sess.run(outs)
|
|
check(outs, log_prob, decimals=4)
|
|
|
|
def test_diag_gaussian(self):
|
|
"""Tests the DiagGaussian ActionDistribution for all frameworks."""
|
|
input_space = Box(-2.0, 1.0, shape=(2000, 10))
|
|
input_space.seed(42)
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
cls = DiagGaussian if fw != "torch" else TorchDiagGaussian
|
|
|
|
# Do a stability test using extreme NN outputs to see whether
|
|
# sampling and logp'ing result in NaN or +/-inf values.
|
|
self._stability_test(cls, input_space.shape, fw=fw, sess=sess)
|
|
|
|
# Batch of size=n and deterministic.
|
|
inputs = input_space.sample()
|
|
means, _ = np.split(inputs, 2, axis=-1)
|
|
diag_distribution = cls(inputs, {})
|
|
expected = means
|
|
# Sample n times, expect always mean value (deterministic draw).
|
|
out = diag_distribution.deterministic_sample()
|
|
check(out, expected)
|
|
|
|
# Batch of size=n and non-deterministic -> expect roughly the mean.
|
|
inputs = input_space.sample()
|
|
means, log_stds = np.split(inputs, 2, axis=-1)
|
|
diag_distribution = cls(inputs, {})
|
|
expected = means
|
|
values = diag_distribution.sample()
|
|
if sess:
|
|
values = sess.run(values)
|
|
else:
|
|
values = values.numpy()
|
|
check(np.mean(values), expected.mean(), decimals=1)
|
|
|
|
# Test log-likelihood outputs.
|
|
sampled_action_logp = diag_distribution.logp(
|
|
values if fw != "torch" else torch.Tensor(values))
|
|
if sess:
|
|
sampled_action_logp = sess.run(sampled_action_logp)
|
|
else:
|
|
sampled_action_logp = sampled_action_logp.numpy()
|
|
|
|
# NN output.
|
|
means = np.array(
|
|
[[0.1, 0.2, 0.3, 0.4, 50.0], [-0.1, -0.2, -0.3, -0.4, -1.0]],
|
|
dtype=np.float32)
|
|
log_stds = np.array(
|
|
[[0.8, -0.2, 0.3, -1.0, 2.0], [0.7, -0.3, 0.4, -0.9, 2.0]],
|
|
dtype=np.float32)
|
|
|
|
diag_distribution = cls(
|
|
inputs=np.concatenate([means, log_stds], axis=-1), model={})
|
|
# Convert to parameters for distr.
|
|
stds = np.exp(log_stds)
|
|
# Values to get log-likelihoods for.
|
|
values = np.array([[0.9, 0.2, 0.4, -0.1, -1.05],
|
|
[-0.9, -0.2, 0.4, -0.1, -1.05]])
|
|
|
|
# get log-llh from regular gaussian.
|
|
log_prob = np.sum(np.log(norm.pdf(values, means, stds)), -1)
|
|
|
|
outs = diag_distribution.logp(values if fw != "torch" else
|
|
torch.Tensor(values))
|
|
if sess:
|
|
outs = sess.run(outs)
|
|
check(outs, log_prob, decimals=4)
|
|
|
|
def test_beta(self):
|
|
input_space = Box(-2.0, 1.0, shape=(2000, 10))
|
|
input_space.seed(42)
|
|
low, high = -1.0, 2.0
|
|
plain_beta_value_space = Box(0.0, 1.0, shape=(2000, 5))
|
|
plain_beta_value_space.seed(42)
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
cls = TorchBeta if fw == "torch" else Beta
|
|
inputs = input_space.sample()
|
|
beta_distribution = cls(inputs, {}, low=low, high=high)
|
|
|
|
inputs = beta_distribution.inputs
|
|
if sess:
|
|
inputs = sess.run(inputs)
|
|
else:
|
|
inputs = inputs.numpy()
|
|
alpha, beta_ = np.split(inputs, 2, axis=-1)
|
|
|
|
# Mean for a Beta distribution: 1 / [1 + (beta/alpha)]
|
|
expected = (1.0 / (1.0 + beta_ / alpha)) * (high - low) + low
|
|
# Sample n times, expect always mean value (deterministic draw).
|
|
out = beta_distribution.deterministic_sample()
|
|
check(out, expected, rtol=0.01)
|
|
|
|
# Batch of size=n and non-deterministic -> expect roughly the mean.
|
|
values = beta_distribution.sample()
|
|
if sess:
|
|
values = sess.run(values)
|
|
else:
|
|
values = values.numpy()
|
|
self.assertTrue(np.max(values) <= high)
|
|
self.assertTrue(np.min(values) >= low)
|
|
|
|
check(np.mean(values), expected.mean(), decimals=1)
|
|
|
|
# Test log-likelihood outputs (against scipy).
|
|
inputs = input_space.sample()
|
|
beta_distribution = cls(inputs, {}, low=low, high=high)
|
|
inputs = beta_distribution.inputs
|
|
if sess:
|
|
inputs = sess.run(inputs)
|
|
else:
|
|
inputs = inputs.numpy()
|
|
alpha, beta_ = np.split(inputs, 2, axis=-1)
|
|
|
|
values = plain_beta_value_space.sample()
|
|
values_scaled = values * (high - low) + low
|
|
if fw == "torch":
|
|
values_scaled = torch.Tensor(values_scaled)
|
|
print(values_scaled)
|
|
out = beta_distribution.logp(values_scaled)
|
|
check(
|
|
out,
|
|
np.sum(np.log(beta.pdf(values, alpha, beta_)), -1),
|
|
rtol=0.01)
|
|
|
|
# TODO(sven): Test entropy outputs (against scipy).
|
|
|
|
def test_gumbel_softmax(self):
|
|
"""Tests the GumbelSoftmax ActionDistribution (tf + eager only)."""
|
|
for fw, sess in framework_iterator(
|
|
frameworks=("tf2", "tf", "tfe"), session=True):
|
|
batch_size = 1000
|
|
num_categories = 5
|
|
input_space = Box(-1.0, 1.0, shape=(batch_size, num_categories))
|
|
input_space.seed(42)
|
|
|
|
# Batch of size=n and deterministic.
|
|
inputs = input_space.sample()
|
|
gumbel_softmax = GumbelSoftmax(inputs, {}, temperature=1.0)
|
|
|
|
expected = softmax(inputs)
|
|
# Sample n times, expect always mean value (deterministic draw).
|
|
out = gumbel_softmax.deterministic_sample()
|
|
check(out, expected)
|
|
|
|
# Batch of size=n and non-deterministic -> expect roughly that
|
|
# the max-likelihood (argmax) ints are output (most of the time).
|
|
inputs = input_space.sample()
|
|
gumbel_softmax = GumbelSoftmax(inputs, {}, temperature=1.0)
|
|
expected_mean = np.mean(np.argmax(inputs, -1)).astype(np.float32)
|
|
outs = gumbel_softmax.sample()
|
|
if sess:
|
|
outs = sess.run(outs)
|
|
check(np.mean(np.argmax(outs, -1)), expected_mean, rtol=0.08)
|
|
|
|
def test_multi_action_distribution(self):
|
|
"""Tests the MultiActionDistribution (across all frameworks)."""
|
|
batch_size = 1000
|
|
input_space = Tuple([
|
|
Box(-10.0, 10.0, shape=(batch_size, 4)),
|
|
Box(-2.0, 2.0, shape=(
|
|
batch_size,
|
|
6,
|
|
)),
|
|
Dict({
|
|
"a": Box(-1.0, 1.0, shape=(batch_size, 4))
|
|
}),
|
|
])
|
|
input_space.seed(42)
|
|
std_space = Box(
|
|
-0.05, 0.05, shape=(
|
|
batch_size,
|
|
3,
|
|
))
|
|
std_space.seed(42)
|
|
|
|
low, high = -1.0, 1.0
|
|
value_space = Tuple([
|
|
Box(0, 3, shape=(batch_size, ), dtype=np.int32),
|
|
Box(-2.0, 2.0, shape=(batch_size, 3), dtype=np.float32),
|
|
Dict({
|
|
"a": Box(0.0, 1.0, shape=(batch_size, 2), dtype=np.float32)
|
|
})
|
|
])
|
|
value_space.seed(42)
|
|
|
|
for fw, sess in framework_iterator(session=True):
|
|
if fw == "torch":
|
|
cls = TorchMultiActionDistribution
|
|
child_distr_cls = [
|
|
TorchCategorical, TorchDiagGaussian,
|
|
partial(TorchBeta, low=low, high=high)
|
|
]
|
|
else:
|
|
cls = MultiActionDistribution
|
|
child_distr_cls = [
|
|
Categorical,
|
|
DiagGaussian,
|
|
partial(Beta, low=low, high=high),
|
|
]
|
|
|
|
inputs = list(input_space.sample())
|
|
distr = cls(
|
|
np.concatenate([inputs[0], inputs[1], inputs[2]["a"]], axis=1),
|
|
model={},
|
|
action_space=value_space,
|
|
child_distributions=child_distr_cls,
|
|
input_lens=[4, 6, 4])
|
|
|
|
# Adjust inputs for the Beta distr just as Beta itself does.
|
|
inputs[2]["a"] = np.clip(inputs[2]["a"], np.log(SMALL_NUMBER),
|
|
-np.log(SMALL_NUMBER))
|
|
inputs[2]["a"] = np.log(np.exp(inputs[2]["a"]) + 1.0) + 1.0
|
|
# Sample deterministically.
|
|
expected_det = [
|
|
np.argmax(inputs[0], axis=-1),
|
|
inputs[1][:, :3], # [:3]=Mean values.
|
|
# Mean for a Beta distribution:
|
|
# 1 / [1 + (beta/alpha)] * range + low
|
|
(1.0 / (1.0 + inputs[2]["a"][:, 2:] / inputs[2]["a"][:, 0:2]))
|
|
* (high - low) + low,
|
|
]
|
|
out = distr.deterministic_sample()
|
|
if sess:
|
|
out = sess.run(out)
|
|
check(out[0], expected_det[0])
|
|
check(out[1], expected_det[1])
|
|
check(out[2]["a"], expected_det[2])
|
|
|
|
# Stochastic sampling -> expect roughly the mean.
|
|
inputs = list(input_space.sample())
|
|
# Fix categorical inputs (not needed for distribution itself, but
|
|
# for our expectation calculations).
|
|
inputs[0] = softmax(inputs[0], -1)
|
|
# Fix std inputs (shouldn't be too large for this test).
|
|
inputs[1][:, 3:] = std_space.sample()
|
|
# Adjust inputs for the Beta distr just as Beta itself does.
|
|
inputs[2]["a"] = np.clip(inputs[2]["a"], np.log(SMALL_NUMBER),
|
|
-np.log(SMALL_NUMBER))
|
|
inputs[2]["a"] = np.log(np.exp(inputs[2]["a"]) + 1.0) + 1.0
|
|
distr = cls(
|
|
np.concatenate([inputs[0], inputs[1], inputs[2]["a"]], axis=1),
|
|
model={},
|
|
action_space=value_space,
|
|
child_distributions=child_distr_cls,
|
|
input_lens=[4, 6, 4])
|
|
expected_mean = [
|
|
np.mean(np.sum(inputs[0] * np.array([0, 1, 2, 3]), -1)),
|
|
inputs[1][:, :3], # [:3]=Mean values.
|
|
# Mean for a Beta distribution:
|
|
# 1 / [1 + (beta/alpha)] * range + low
|
|
(1.0 / (1.0 + inputs[2]["a"][:, 2:] / inputs[2]["a"][:, :2])) *
|
|
(high - low) + low,
|
|
]
|
|
out = distr.sample()
|
|
if sess:
|
|
out = sess.run(out)
|
|
out = list(out)
|
|
if fw == "torch":
|
|
out[0] = out[0].numpy()
|
|
out[1] = out[1].numpy()
|
|
out[2]["a"] = out[2]["a"].numpy()
|
|
check(np.mean(out[0]), expected_mean[0], decimals=1)
|
|
check(np.mean(out[1], 0), np.mean(expected_mean[1], 0), decimals=1)
|
|
check(
|
|
np.mean(out[2]["a"], 0),
|
|
np.mean(expected_mean[2], 0),
|
|
decimals=1)
|
|
|
|
# Test log-likelihood outputs.
|
|
# Make sure beta-values are within 0.0 and 1.0 for the numpy
|
|
# calculation (which doesn't have scaling).
|
|
inputs = list(input_space.sample())
|
|
# Adjust inputs for the Beta distr just as Beta itself does.
|
|
inputs[2]["a"] = np.clip(inputs[2]["a"], np.log(SMALL_NUMBER),
|
|
-np.log(SMALL_NUMBER))
|
|
inputs[2]["a"] = np.log(np.exp(inputs[2]["a"]) + 1.0) + 1.0
|
|
distr = cls(
|
|
np.concatenate([inputs[0], inputs[1], inputs[2]["a"]], axis=1),
|
|
model={},
|
|
action_space=value_space,
|
|
child_distributions=child_distr_cls,
|
|
input_lens=[4, 6, 4])
|
|
inputs[0] = softmax(inputs[0], -1)
|
|
values = list(value_space.sample())
|
|
log_prob_beta = np.log(
|
|
beta.pdf(values[2]["a"], inputs[2]["a"][:, :2],
|
|
inputs[2]["a"][:, 2:]))
|
|
# Now do the up-scaling for [2] (beta values) to be between
|
|
# low/high.
|
|
values[2]["a"] = values[2]["a"] * (high - low) + low
|
|
inputs[1][:, 3:] = np.exp(inputs[1][:, 3:])
|
|
expected_log_llh = np.sum(
|
|
np.concatenate([
|
|
np.expand_dims(
|
|
np.log(
|
|
[i[values[0][j]]
|
|
for j, i in enumerate(inputs[0])]), -1),
|
|
np.log(
|
|
norm.pdf(values[1], inputs[1][:, :3],
|
|
inputs[1][:, 3:])), log_prob_beta
|
|
], -1), -1)
|
|
|
|
values[0] = np.expand_dims(values[0], -1)
|
|
if fw == "torch":
|
|
values = tree.map_structure(lambda s: torch.Tensor(s), values)
|
|
# Test all flattened input.
|
|
concat = np.concatenate(tree.flatten(values),
|
|
-1).astype(np.float32)
|
|
out = distr.logp(concat)
|
|
if sess:
|
|
out = sess.run(out)
|
|
check(out, expected_log_llh, atol=15)
|
|
# Test structured input.
|
|
out = distr.logp(values)
|
|
if sess:
|
|
out = sess.run(out)
|
|
check(out, expected_log_llh, atol=15)
|
|
# Test flattened input.
|
|
out = distr.logp(tree.flatten(values))
|
|
if sess:
|
|
out = sess.run(out)
|
|
check(out, expected_log_llh, atol=15)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|