ray/rllib/tuned_examples/halfcheetah-ddpg.yaml
Sven Mika 83e06cd30a
[RLlib] DDPG refactor and Exploration API action noise classes. (#7314)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix

* WIP.

* Add TD3 quick Pendulum regresison.

* Cleanup.

* Fix.

* LINT.

* Fix.

* Sort quick_learning test cases, add TD3.

* Sort quick_learning test cases, add TD3.

* Revert test_checkpoint_restore.py (debugging) changes.

* Fix old soft_q settings in documentation and test configs.

* More doc fixes.

* Fix test case.

* Fix test case.

* Lower test load.

* WIP.
2020-03-01 11:53:35 -08:00

55 lines
1.4 KiB
YAML

# This configuration can expect to reach 2000 reward in 150k-200k timesteps
halfcheetah-ddpg:
env: HalfCheetah-v2
run: DDPG
stop:
episode_reward_mean: 2000
time_total_s: 5400 # 90 minutes
config:
# === Model ===
actor_hiddens: [64, 64]
critic_hiddens: [64, 64]
n_step: 1
model: {}
gamma: 0.99
env_config: {}
# === Exploration ===
exploration_config:
initial_scale: 1.0
final_scale: 0.02
scale_timesteps: 10000
ou_base_scale: 0.1
ou_theta: 0.15
ou_sigma: 0.2
timesteps_per_iteration: 1000
target_network_update_freq: 0
tau: 0.001
# === Replay buffer ===
buffer_size: 10000
prioritized_replay: True
prioritized_replay_alpha: 0.6
prioritized_replay_beta: 0.4
prioritized_replay_eps: 0.000001
clip_rewards: False
# === Optimization ===
actor_lr: 0.001
critic_lr: 0.001
use_huber: False
huber_threshold: 1.0
l2_reg: 0.000001
learning_starts: 500
sample_batch_size: 1
train_batch_size: 64
# === Parallelism ===
num_workers: 0
num_gpus_per_worker: 0
worker_side_prioritization: False
# === Evaluation ===
evaluation_interval: 5
evaluation_num_episodes: 10